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INTRODUCTION

Until very recently, airport and highway engineers have been
rather fortunate in that almost any reasonably well designed
mixture of gravel or crushed stone and asphalt has had sufficient
stability for pavements for the weights and intensities of traffic
to which they have been subjected on airports and rural highways.
Similarly, crushed gravel or crushed stone, and even pit-run
gravel, have provided adequate stability for the underlying base
courses. The truth of this statement is verified by the fact that
hundreds of millions of square yards'of flexible pavements have
been laid on highways and airports all over the world without
any test for stability having been made on either the base course
or surfacing materials. The ultimate arbitrament of traffic has
demonstrated that stable pavement structures have generally
been obtained in spite of this lack of formal stability tests.

In the past, most bituminous pavements have been designed
and constructed on the basis of previous experience with the
same or similar materials, and with no laboratory control apart
from occasional extraction, gradation, and density tests. Base
course materials have been selected on the basis of their visual
appearance, guided occasionally by a sieve analysis sometimes
augmented by a plasticity index determination. Formal stability
tests for either the design or construction control of base course
and surfacing materials have been the exception rather than the
rule. Many organizations laying large areas of flexible pavement
each year do not specify a stability requirement of any kind for
either the base or surface courses.

This fortuitous circumstance, namely that most granular
base and sub-base materials, and most reasonably well designed
bituminous surfaces, have had adequate stability for the traffic
loads to which they have been exposed in the past is largely re-
sponsible for the fact that we still know very little about the
fundamental factors on which the stability of a flexible pavement
depends. If the materials themselves had had less inherent
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stability, or if the unit pressures of traffic had frequently ex-
ceeded the stability of either the flexible pavement structure as
a whole, or of one or more of its layers, highway and airport
engineers would have been forced long ago to investigate the
basic factors upon which the stability of every part of a flexible
pavement depends. It appears that we are just entering the stage
where these fundamentals must be studied.

Since World War II, the advent of jet aircraft with tire pres-
sures of 200 to 300 p.s.i., and the possibility that these inflation
pressures may be further increased, has made it necessary to
re-examine our current more or less lackadaisical approach to
all phases of flexible pavement design, Tire inflation pressures
of this magnitude create high shearing stresses in the portion of
the surface and base course close to the loaded area. To resist
these high shearing stresses, surfacing and base course ma-
terials with high shearing strengths are required. Consequently,
airport engineers have been forced to give more attention to
methods for measuring the strength or stability of base course
and surfacing materials. To a somewhat similar degree, the in-
creasing number of heavy axle loadings on highways is forcing
highway engineers also to devote more attention to these prob-
Iems of flexible pavement stability.

An accurate formulation or statement of any problem is the
first important step toward its solution. If the stability of flex-
ible pavements is to be investigated, what stability criteria are
to be employed? For this paper, it is assumed that every flex-
ible pavement must satisfy each of the following three stability
requirements, which formulate the stability problem in this
case:

1. The overall thickness of sub-base, base course, and bitumin-
ous surface must be adequate to protect the subgrade from
failure under the stresses transmitted from the loaded area.

2. The shearing strengths of the materials in layers close to
the loaded area must be greater than the shearing stresses
caused by high inflation pressures, which tend to cause fail-
ure along shear surfaces entirely within the base course and
bituminous surface.

3. The stability of each individual layer, sub-base, base course,
and bituminous surface, must be greater than the tendency of
the layer to fail by being squeezed out laterally under the ap-
plied load. For example, the bituminous surface must be
stable enough to resist being squeezed out between the tire
and base course.
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The first of the above three requirements of flexible pave-
ment design has already received considerable study (1, 2, 3, 4,
5, 6, 7, 8, 9) by means of methods that are either wholly empiri-
cal, entirely theoretical, or a combination of both. The author
has outlined a rational solution to the third problem in previous
papers (10, 11, 12, 13, 14, 15), insofar as the stability of the bi-
tuminous pavement itself is concerned. While it deals to some
extent with each of the above three flexible pavement stability
requirements, it is the principal purpose of the present paper
to investigate the second problem, and to re-examine the first,
on the basis of an ultimate strength approach to flexible pave-
ment design.

CONSIDERATIONS THAT LEAD TO AN ULTIMATE
STRENGTH APPROACH TO FLEXIBLE
PAVEMENT DESIGN

The composite cross-section of a flexible pavement, consist-
ing of the three principal layers, subgrade, base course, and bi-
tuminous surface, is illustrated in Figure 1. Both empirical and
rational methods are available for determining the stability of
each of these three layers, and of the flexible pavement as a
whole.

Among the empirical methods, the C.B.R. and Marshall
methods of the Corps of Engineers, the Hveem stabilometer, and
North Dakota cone are well known. While empirical methods
are widely used in the flexible pavement field, they have the
serious disadvantage that they have been developed for a specific
set of conditions, and cannot be safely employed under new and
different circumstances until investigated for these. It is be-
cause they have no theoretical background that the use of empiri-
cal tests is so limited, and cannot be extrapolated from one situ-
ation to another without careful pretesting for every set of con-
ditions. Furthermore, the factor of safety represented by the use
of empirical methods cannot be determined, and they may at
times lead to either serious overdesign or underdesign due to
their neglect of important variables.

In 1943, Professor Burmister (16) proposed a rational method
of design for the layered system represented by a flexible pave-
ment. In Burmister’s method, each layer, subgrade, base course,
and bituminous surface, is assumed to consist of perfectly elas-
tic material. Consequently, insofar as its strength is concerned,
the most important characteristic of the material in each layer
is its modulus of elasticity. For any measured or given moduli



122 McLEOD

APPLIED LOAO

ST . '0 - - ....
-~ R ER e u ..~ . SUBGRADE .
CONCT T TN T e T
~ DR g A -

Fig. l. Diagram of Shear Planes Under a L.oaded Area.

of elasticity for the subgrade, base course, and bituminous sur-
face, and for any specified deflection of the surface of the pave-
ment under the applied load within the elastic range, the re-
quired thickness of flexible pavement can be determined. Partly
because of its own individual merit, and partly because of its
stimulation toward organized rational thought in this field, Pro-
fessor Burmister’s theory represents an outstanding contribu-
tion to flexible pavement design.

The principal criticism of the Burmister theory concerns its
assumption that the soils, aggregates, and bituminous mixtures
that make up the various layers of a flexible pavement, function
as perfectly elastic materials; that is, they obey Hooke’s law,
and strain is proportional to stress. The actual behaviour of
many of these is far from elastic. Another criticism is that a
critical surface deflection must be arbitrarily assumed, since
information does not exist to indicate what this deflection should
be and how it should vary with size of contact area, intensity of
inflation pressure, thickness of flexible pavement, etc. Further-
more, the moduli of elasticity of many cohesionless base course
aggregates and bituminous paving mixtures seem to lie within a
similar range. Wherever this occurs, Burmister’s method in-
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dicates them to be of equivalent strength in flexible pavement
design. Results developed later in the present paper indicate
that this may not be true. Finally, an elastic theory is subject
to the general criticism that the factor of safety against ultimate
failure is not known.

It has been frequently observed that when an earth road con-
sisting of a relatively soft homogeneous clay or loam is over-
loaded by traffic a rut forms in each wheel path and upheaval of
the displaced material occurs on both sides of the lane. Itis
also a matter of relatively common observation that when a flex-
ible pavement consisting of subgrade, base course, and bitumin-
ous surface is overloaded by traffic, similar rutting and upheaval
develops. Therefore, in a qualitative way at least, failure of the
layered system of a flexible pavement when overloaded by
wheeled traffic seems to follow the general pattern of failure of
a homogeneous soil that has been overstressed by traffic. In
both of these cases, failure occurs because the applied wheel
load exceeds the ultimate strength of the roadway structure. Ex-
pressed in another way, failure takes place because the applied
shearing stress exceeds the shearing resistance of the loaded
material,

These various considerations have led the author to a differ-
ent rational approach to flexible pavement design. Professor
Burmister’s theory is based upon the assumptions of a critical
surface deflection, and of elastic performance of the materials
in the different layers. In the present paper, an attempt will be
made to analyse the flexible pavement problem on the basis of
shearing stress versus shearing resistance. Since the ultimate
strength of the flexible pavement is employed, which is far be-
yond any elastic range of loading the structure may have, the
method described in this paper is based upon the plastic rather
than the elastic behaviour of the materials in the various layers
of the flexible pavement.

LOGARITHMIC SPIRAL METHOD FOR DETERMINING
THE ULTIMATE STRENGTH OF SOILS

Various investigators have studied the problem of the ulti-
mate bearing capacity of homogeneous soils. Equations for ulti-
mate strength have been proposed by Prandtl (17), Terzaghi (18),
Krey (19), Fellenius (20), Meyerhof (21), and others. It is beyond
the scope of this paper to review each of these critically.
However, reference will be made to the principles on which
several are based, in order to point out the reasons for the selec-
tion of the logarithmic spiral method adopted in this paper.



124 McLEOD

One of the earliest simple methods proposed for calculating
the ultimate strengths of homogeneous soils was the Terzaghi-
Hogentogler equation (22-23). This was based upon the assump-
tion of failure along the straight line shear planes ab and bc in
Figure 2(a). Failure occurs when the shearing strength stress
exerted on these shear planes by the applied load exceeds the
shearing strength. The shearing resistance of the soil along
these failure planes is given by the well-known Coulomb equa-
tion s = ¢ + n tan . From the nature of this equation, it is ap-
parent that any factor that will increase the normal pressure n
on the plane of failure will add to the magnitude of the n tan ¢
term of the Coulomb equation and thereby increase the shearing
strength s of the soil.

The Terzaghi-Hogentogler equation overlooks the possibility
that the applied load itself may increase the normal pressure n
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on the failure plane bc in Figure 2(a). Investigations by Housel
(24), and by Davis and Woodward (25, 26), have shown that
spreading of the applied load outward with depth below the loaded
area may add considerably to the magnitude of the normal pres-
sure n exerted on the failure plane bc. Neglect of this factor
makes the Terzaghi-Hogentogler equation for ultimate bearing
capacity ultra-conservative.

On the other hand, the manner in which an applied load
spreads outward with depth in a homogeneous soil is not known
precisely. In the region close to the loaded area at least, this
depends upon such factors as the nature of the soil, how the load
is applied, e.g. rigid or flexible bearing, etc. As a consequence,
the way in which the normal stress n, due to this spreading of
the applied load with depth, varies in magnitude along the failure
plane bc is not accurately known and must also be assumed. The
calculated ultimate strength in turn will be no more accurate
than this assumption. In addition, even after this distribution of
normal stress n has been assumed, the summation of the total
shearing resistance s, acting along the surface of failure, is not
a simple matter, since the n tan¢ term of the shearing strength
varies from point to point along the failure surface.

The principal problem, therefore, in obtaining a reasonably
accurate ultimate strength value for a homogeneous soil, even
on the basis of the simple failure planes in Figure 2(a), is due
to uncertainty concerning the magnitude and distribution of the
normal stress n acting on the fajlure plane bec. It should be
particularly noted that this introduces equal uncertainty into the
value of the n tan¢ term of the Coulomb equation for the shear
strength s of each individual element of length along the failure
surface bc.

Recent theoretical studies of the shape of the pressure bulb
in a layered system by Fox (27) at the National Physical Labora-
tory in England have shown that the pattern of pressure distribu-
tion on horizontal planes below a loaded surface is still less cer-
tain for a layered than for a homogeneous system. Consequently,
if it is not easy to determine the ultimate bearing capacity of a
homogeneous soil on the basis of the simple straight line failure
planes of Figure 2(a), it is still more difficult to do so for the
layered system of Figure 2(b). In both cases, accurate values
for the shearing resistance s can not be calculated because the
magnitude and distribution pattern of the normal pressure n on
the plane of failure is not definitely known.

The circular arc failure curve proposed by Fellenius (20) can
be used for the determination of the ultimate strength of a
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homogeneous soil, Figure 3(a). The critical circular arc is
found by trial and error and is the arc along which the shearing
resistance of the soil will support the lowest ultimate load. The
ultimate strength is obtained by equating the moment of applied
load about the centre of the critical circular arc to the reaction
moment about the same point. The reaction moment consists of
the summation of the tangential shearing resistance on all ele-
ments of the circular arc multiplied by the radius of the arc.
Here again, however, the same difficulty that has already been
described in connection with Figures 2(a) and 2(b) still arises.
The magnitude of the normal pressure n acting on each element
of the circular arc is not definitely known. Consequently, the
value of the n tan¢ term of the Coulomb equation for shearing
resistance acting tangentially along each element of the circular
arc cannot be determined without making assumptions concerning
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the pattern of lateral distribution of the applied load below the
loaded area. The calculated ultimate strength can be no more
accurate than these assumptions. In addition, the calculation of
the part of the reaction moment due to the n tan¢ portion of the
tangential shearing resistance along the circular arc of Figure
3(a) is a time-consuming task, particularly since the centre of
the critical circular arc must be found by trial and error. These
difficulties with the n tan¢ term do not arise, of course, when
applying Fellenius’ method to homogeneous cohesive soils for
which the angle of internal friction ¢ = 0.

When discussing the determination of the ultimate bearing
capacity of a homogeneous soil by the methods illustrated in
Figures 2(a), 2(b), and 3(a), it has been shown that a major dif-
ficulty arises because the value of the normal stress n to be used
in the Coulomb equation for shearing strength, s =c + n tan¢ , is
not accurately known. This problem leads to considering whether
there is any alternative approach to the calculation of ultimate
bearing capacity, which would eliminate the n tan ¢ term of the
Coulomb equation, and substitute for it some other quantity that
can be accurately measured or calculated.

As illustrated in Figure 3(b), the assumption of a logarithmic
spiral failure curve, for which the angle between the radius vec-
tor and the normal to the curve is equal to the angle of internal
friction ¢, meets these requirements, provided the ultimate
strength is obtained by equating the load moment to the reaction
moment. Two symmetrical spiral failure curves normally occur
about a strip load, but to save space in Figure 3(a) the spiral on
only one side is shown. Figure 3(b) demonstrates that the result-
ant of the intergranular normal (n) and frictional (n tan¢ ) forces
acting at any point along a logarithmic spiral is directed to the
origin of the spiral. Consequently, since the moment arm is
zero, the moment of the resultant of the intergranular stresses
(n and n tan¢ ), at any point along the spiral, about the origin of
the spiral, is always zero. On the other hand, due to the shape
of the logarithmic spiral, there is a greater weight of material
within the spiral to the right than to the left of the vertical
through the origin. This creates a weight moment about the
origin of the spiral.

For the friction moment due to the n tan ¢ term of the Cou-
lomb equation in the case of the circular arc of Figure 3(a) and
other failure surfaces, therefore, the logarithmic spiral failure
curve of Figure 3(b) substitutes a weight moment. As previously
pointed out, the term n tan @ is difficult to evaluate precisely.
On the other hand, the weight moment of a logarithmic spiral
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failure curve can be readily calculated to any desired degree of
accuracy.

The significance of each term of the general equation for the
logarithmic spiral,

r =r,ed tand (1)

is illustrated in Figure 3(b):

r, is the initial radius vector;

r is any other radius vector;

@ is the angle between the two radius vectors r, and r, and
is measured in radians;

e is the base of natural logarithms and is equal to 2.71828;
and

¢ is the angle of internal friction of the material subjected
to load.

When calculating the ultimate strength of a homogeneous soil
on the assumption of a logarithmic spiral failure curve, the well-
known principle of mechanics that for equilibrium the sum of the
moments of the forces about any point must be equal to zero is
employed. In this case, it is most convenient to select the origin
of the spiral as the point about which the moments are to be
taken.

At equilibrium,

load moment = reaction moment = weight moment plus co-
hesion moment.

The load moment is obtained by multiplying the total load by the
moment arm. The reaction moment consists of two quantities,
the weight moment and the cohesion moment.

Since more material is contained within the spiral to the
right than to the left of the vertical through its origin, this un-
balanced weight results in a weight moment. If the material
under load possesses any cohesion, its cohesion c acts as a
shearing resistance along the entire length of the spiral. The
summation of the moments for cohesion ¢ for each element of
length of the spiral about the spiral’s origin gives the cohesion
moment.

Mr. E. S. Barber (28) has published several tables of basic
data that simplify calculations involving the logarithmic spiral.
These tables enable the weight moment and the cohesion moment
for the critical spiral, and the ultimate strength to be more
readily determined for loads applied to homogeneous soils with
different c and ¢ values.
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The principles involved in the determination of the ultimate
strength of a homogeneous soil by means of a logarithmic spiral
failure curve are illustrated by a sample calculation in Appendix
A, and can be very easily described. By trial and error, the lo-
cation of the origin of the spiral along which the shearing resist-
ance of the soil will support the smallest ultimate applied load is
found. In this trial and error method, the load moment is equated
to the sum of the weight moment and the cohesion moment for
each trial spiral selected. This approach is, therefore, somewhat
similar to that employed in the circular arc method for deter-
mining the stability of slopes.

The origin of the critical spiral determined by the trial and
error method lies on a radius vector through an extremity of the
loaded area and making a positive angle 6, with the horizontal,
Figure 19. For cohesionless soils, the origin of this spiral is at
the intersection of this radius vector with the vertical marking
75 per cent of the distance toward the opposite extremity of the
loaded area (Appendix D). For cohesive soils with zero angle of
internal friction, the origin of the spiral is at the intersection of
the radius vector with the vertical through the opposite extremity
of the loaded area (Appendix D). For soils with both ¢ and ¢
values, the origin of the critical spiral lies on the radius vector
at its intersection with a vertical somewhere between 75 and 100
per cent of the distance toward the opposite extremity of the
loaded area (Appendix D). The angle 6,= 23.2° for the critical
spiral for homogeneous cchesive soils for which the angle of in-
ternal friction @= 0, and increases as ¢ is increased. 6, ap-
proaches ¢ for values of ¢ greater than 45°.

To simplify the calculations, unless specifically stated to be
otherwise, all data in this paper pertain to the condition of strip
loading; that is, for a loaded area which is very long in propor-
tion to its width. The contact area of a loaded tire is elliptical
in outline, but the calculations for ultimate strength for this
shape of contact area become quite complicated. Other investi-
gators (29, 30) have found that the ultimate unit load supported
by a homogeneous cohesive soil on a square or round bearing
area is from 20 to 30 per cent higher than the ultimate unit pres-
sure supported by the same soil on a strip load of the same
width.

To save space in Figures 3(a), 19, and in other diagrams of
this paper, only one logarithmic spiral failure curve, passing
through the left extremity of the loaded area and extending toward
the right, is shown. In all cases, however, a similar logarithmic
spiral failure curve passing through the right extremity of the
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loaded area and extending toward the left also exists. The two
spirals are symmetrical about the mid ordinate of the loaded
area.

THE ULTIMATE STRENGTH OF HOMOGENEOUS SOILS

Since it represents the simplest case, the application of the
logarithmic spiral method to the determination of the ultimate
strength of a homogeneous soil will be considered first. In terms
of flexible pavement design, this corresponds to a surface treat-
ment of negligible influence and thickness, placed on a great depth
of homogeneous soil. '
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Figure 4 demonstrates how the reaction moment increases
with increasing angle of internal friction ¢ of the homogeneous
soil being loaded to failure. The logarithmic spiral becomes
longer as ¢ becomes greater. This increases both the weight
moment and the cohesion moment, which together make up the
total reaction moment. Figure 4 also illustrates very clearly
how a weight moment is substituted for a friction moment
(n tan@) in the case, of cohesionless soils.

In Figure 5, the increase in the ultimate strength q for a strip
load 10 inches wide is illustrated as the angle of internal friction
¢ of a homogeneous cohesionless soil is increased. For highway
and airport construction, reasonably well-compacted cohesionless
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soils would have angles of internal friction normally ranging from

Thanaad AN £ KRN0
about 30 to 50° or slightly higher. On the basis of a logarithmic

spiral failure curve, and the other conditions illustrated in Figure
5(a), it is shown in the graph of Figure 5(b) that as the angle of
internal friction ¢ changes from 30 to 50°, the ultimate strength q
of a cohesionless so0il increases from about 16 p.s.i. to about
1,000 p.s.i.

Figure 6 demonstrates the large increase in ultimate strength
q that would be possible if the angle of internal friction ¢ of a
soil were maintained constant at 35°, while its cohesion ¢ was in-
creased from 0 to 14 p.s.i. For the conditions illustrated in
Figure 6(a), it is observed from the graph of Figure 6(b) that the
ultimate strength q is increased from 37 p.s.i. when c = 0, to
342 p.s.i. when ¢ = 5 p.s.i., to 883 p.s.i. when c = 14 p.s.i. Nij-
boer (31) has reported the results of some triaxial tests on a
sand in both the dry and moist states. No difference in the angle
of internal friction ¢ occurred between the moist and dry condition
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in these tests. However, he found that the cementing or binding
effect of the moisture films on the moist sand provided a value
for cohesion c = 1.4 p.s.i. Of particular interest, therefore, is
the increase in ultimate strength q from 37 p.s.i., whenc =0
and @ = 35° to 125 p.s.i., when ¢ = 1.4 p.s.i. and @ = 35°, shown
in Figure 6(b). This is at least qualitatively in keeping with the
large variation in the ultimate strength of beach sand between
the moist and dry states that is a matter of common experience.

Roads through large areas of sand in Nebraska, Florida, and
elsewhere, were unstable under traffic until stabilized by the
addition of bituminous binders. Figure 6 explains very clearly
why the incorporation of bituminous binders increased the bear-
ing capacity of the sand in these cases. The cohesionless sand
with its inherently low ultimate strength was converted to a ma-
terial with much greater ultimate strength by the addition of
bituminous cements that provided cohesion c.

Natural deposits of the good gravel aggregates required for
stable base courses are becoming depleted. While large deposits
of sands and inferior gravels are still readily available, their
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stability is too low for service as base course materials, par-
ticularly for traffic on tires inflated to high pressures, which
may cause failure within the base. Figure 6 demonstrates that

by the use of a suitable binder the stability of these inferior ag-
gregates could be increased to the extent required for good base
course performance. For example, from a comparison of Fig-
ure 5(b) and 6(b), it is seen that if to an inferior aggregate with
an angle of internal friction ¢ = 35° a binder can be added to give
a cohesion ¢ = 1.0 p.s.i. without decreasing @, its ultimate
strength q becomes 100 p.s.i., Figure 6(b), which is the same as
the ultimate strength of a cohesionless gravel for which &= 40°,
Figure 5(b). If to the material for which ¢ = 35°, the added binder
gives cohesion ¢ = 6 p.s.i. with no reduction in ¢, its ultimate
strength becomes 403 p.s.i., Figure 6(b), which is identical with
the ultimate strength of a cohesionless gravel for which ¢ = 46°
30’, Figure 5(b). Similarly, for ¢ = 35° and c = 14 p.s.i., Figure
6(b), the ultimate strength q = 883 p.s.i. is the same as that for a
cohesionless gravel for which @ = 49°30’, Figure 5(b). Therefore,
it is possible by the addition of a suitable binder to a cohesionless
sand or gravel of low stability to increase its shearing strength
or stability to equal that of a cohesionless aggregate of high
stability.

Similarly, by adding a suitable binder to increase the cohe-
sion ¢ of loam soils that already have a low cohesion ¢ and an
intermediate angle of internal friction ¢, their ultimate strength
q, or stability, can be increased to equal that of good cohesion-
less base course aggregates. Although it is probably not always
clearly recognized, this is one of the objectives of the stabiliza-
tion of both cohesive and cohesionless soils for base course con-
struction.

It is highly significant that attempts at the stabilization of
heavy clay soils with bituminous binders have not been success-
ful so far. It is believed that failure in this respect is explained
by Figure 8. The angle of internal friction ¢ of moist heavy
clays encountered in the field is very low, and may frequently
approach zero. Figure 8 shows that for a given ultimate strength
requirement, if the angle of internal friction ¢ approaches zero,
the cohesion ¢ must be correspondingly high, With heavy clay
soils at normal field moisture content, the required increase in
cohesion ¢ is difficult to obtain by the addition of bituminous
binders, since the total liquid content tends to hold cohesion ¢ to
a relatively low value. Cohesion ¢ would be expected to increase
as the penetration of the bituminous binder was decreased. How-
ever, bituminous binders of low penetration would be difficult to
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mix with fine textured heavy clay soils, particularly if moist, un-
less used in the form of cutbacks or emulsions. If the latter are
employed, there is the further problem of aeration of the soil-
bitumen mixture to a sufficient degree. The successful stabiliza-
tion of heavy clay soils with bituminous binders would seem to
require either drying the clay to a low moisture content, or em-
ploying some other mechanical or chemical treatment to increase
its angle of internal friction to a value approaching 20 to 30° be-
fore the bituminous cement is added.

When adding binders to cohesionless soils (and even to co-
hesive soils), it must be kept in mind that many binders can func-
tion as lubricants as well as cements. When functioning as lubri-
cants, they tend to reduce the angle of internal friction. The
cementing action of many binders increases up to a certain binder
content, after which the lubricating effect becomes predominant
as more binder is added. When the lubricating effect becomes
sufficiently pronounced, the decrease in the angle of internal
friction ¢ may be large enough that the ultimate strength q may
be lowered materially, even though the cohesion ¢ may still be
increasing. Figure 7 shows assumed values for ¢ and c for a
cohesionless aggregate with an angle of internal friction ¢= 400,
as a binder is added to it. The curve for ultimate strength q in
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Fig. 7. Influence of the Addition of a Cohesive Binder On the
Ultimate Strength of a Cohesionless Soil.
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Figure 7 indicates that q increases to a maximum of 1,060 p.s.i.
at a binder content of 4.8 per cent, after which it decreases as
further binder is added. At a binder content of 10 per cent, the
ultimate strength q is less than that of cohesionless aggregate by
itself. Figure 7 emphasizes the need for careful investigation of
the influence of any proposed binder on the ultimate strength or
stability of a soil to determine that even small percentages of the
binder do not decrease rather than increase the stability or ulti-
mate bearing capacity of the soil.

Figures 6(b) and 7 demonstrate the increase in stability of
relatively unstable cohesionless materials that may occur as a
cohesive binder is added. They also imply that the stability of
even a highly stable cohesionless base course aggregate can be
further increased when necessary by the addition of a binder that
will give cohesion ¢ without materially decreasing its angle of
internal friction 9.
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Figure 8 illustrates the various combinations of values of ¢
and ¢ for soil materials that are required for a constant ulti-
mate strength q of 200 p.s.i. Figure 8 shows that soils for which
¢ =36.4p.s.i.and §=0, c = 21.5 p.s.i. and P= 10° c = 11 p.s.i.
and ¢ = 20° ¢ =5 p.s.i.and ¢ = 30% c = 1 p.s.i. and ¢ = 40°, or
c = 0 p.s.i. and ¢ = 449, etc., would all have an ultimate strength
of 200 p.s.i. Figure 8, therefore, demonstrates further the
principle already implied in Figures 6 and 7, that a certain re-
quired ultimate strength or stability can be obtained by combin-
ing a low angle of internal friction ¢ with a high cohesion ¢, in-
termediate values of ¢ and @, or a high angle of internal friction
¢ with a low cchesion c.

Figures 4, 5, 6, 7, and 8 all réfer to the ultimate strength of
homogeneous soils as determined by means of the logarithmic
spiral approach. It is realized that ultimate strength values for
homogeneous soils can be determined by means of equations for
bearing capacity that have been developed by other investigators.
For comparative purposes, the ultimate strength values for
homogeneous soils given by several of the better known equations
for bearing capacity are listed in Table I.

Table I. Ultimate Bearing Capacity of Homogeneous Soils

Strip Loading
Width of Loaded Strip = 10 inches
Soil Density = 135 lbs. per cu. ft.

Bearing Capacity Ultimate Strength Values in p,s.i. when

Formula ¢ =5p.s.d, ¢ = 5p.s.i, c =5 p.s.i. c=0
¢=0 @ =20° ¢ = 35° & =40°

Terzaghi-Hogentogler 20 45 94 8.5

Terzaghi 28.5 92 307 51

Prandtl 25.7 4 17 -

Fellenius 27.6 - -~ -

Logarithmic Spiral 27.6 90 338 101

From the data of Table I, it is apparent that the logarithmic
spiral provides values for the ultimate strengths of cohesive
soils (columns 2, 3, and 4 in Table I), that are similar to those
given by some other bearing capacity equations. For cohesion-
less soils, on the other hand, the right hand column in Table I
shows that the logarithmic spiral gives ultimate strength values
which are considerably higher than those derived by other
methods.

Davis and Woodward (25) report making over 100 bearing
capacity tests on sands. Table II contains data taken from their
paper, in which they compared the measured ultimate strength
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of a sand with those  calculated by means of several bearing capa-
city equations. In addition, an ultimate strength value calculated
on the basis of the logarithmic spiral method employed for the
present paper has been included.

Table II. Ultimate Bearing Capacity of Cohesionless Soil

Strip Loading
Loaded Strip 1 inch wide; 10 and 24 inches long
c=0 ¢=36°
Density = 102 1lbs. per cu. ft.

Bearing Capacity Formula Ultimate Strength in p.s.i.
Actual Load Test (Davis and Woodward) 14 to 20
Terzaghi-Hogentogler 0.4
Terzaghi 1.5
Logarithmic Spiral 34

While Table IT shows that all of the bearing capacity values
calculated by means of the theoretical methods are several times
less than that measured by the actual load test on this sand, the
ultimate strength calculated by the logarithmic spiral approach
comes closest to the measured value. On this basis, it might be
concluded that the logarithmic spiral gives an ultimate strength
value for the cohesionless soil (¢ = 40°) in Table I, that is only
less conservative than those of the other methods. However, in
spite of the fact that the logarithmic spiral method gives best
agreement with the measured bearing capacity value in Table II,
it should be mentioned that other investigators have reported
good checks between measured values of the ultimate strength
of cohesionless soils and those calculated by other bearing capa-
city formulae, such as Terzaghi’s. It is generally agreed that
we still have a great deal to learn about the bearing capacity of
soils, and this is emphasized by the variations in the data of
Tables I and II.

Table HI indicates that the large difference between the ulti-
mate strength value measured by Davis and Woodward for a
sand understood to be cohesionless, and the values calculated by
several theoretical bearing capacity equations, Table II, might
possibly be due at least in part to the existence of a very small
quantity of cohesion c in the sand. For the strip loading width
of 1 inch, which they used for the data of Table II, the informa-
tion in the second and third columns on the left of Table HI indi-
cates that on the basis of the logarithmic spiral method the cal-
culated ultimate strength would be 3.43 p.s.i. if ¢ = 0, and 14.3
p.s.i. if ¢ = 0.15 p.s.i. Consequently, an actual existence of
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Table II. Influence of Width of Loaded Area and of Small Values
of Cohesion ¢ on the Ultimate Strength of a Cohesionless Soil
When Calculated by the Logarithmic Spiral Method

Strip Loading
Width of Loaded Area = L = 1 inch and 10 inches
Density of Sand = 102 1bs. per cubic foot
Angle of Internal Friction ¢ = 36°

When L = 1.0 inch When L = 10 inches

Cohesion c in p.s.i.
c=0 c=0.15 c=1 c=0 c=1

Ultimate Strength in psi. 3.43 14.3 4 343 107.8

cohesion ¢ = 0.15 p.s.i. in the sand with which Davis and Wood-
ward were working would account for the entire difference be-
tween their measured value of ultimate strength, 14 p.s.i., and
the value of 3.43 p.s.i. calculated by the logarithmic spiral meth-
od on the assumption that the sand was entirely cohesionless. A
cohesion ¢ = 0.15 p.s.i. is so small that it is within the range of
experimental error for most triaxial or direct shear tests and
would ordinarily be overlooked or disregarded. It should be
recognized that this small value of cohesion ¢ = 0.15 p.s.i. would
not necessarily be due to the presence of a binder. Any charac-
teristic of the sand that would lead to the existence of this small
intercept on the ordinate axis of the Mohr or Coulomb diagram
(the shear strength value at zero normal stress on the plane of
failure commonly called cohesion c) would give the large in-
crease in the ultimate strength of the sand that has been listed

in Table III. While this small cohesion c, if it actually existed
in the sand used by Davis and Woodward, may have been due to
some characteristic other than moisture, it might be mentioned
that small quantities of adsorbed moisture can influence the
physical properties of sand. This has been pointed out by inves-
tigators (32) who have endeavoured to standarize a given sand
for use in the sand method for controlling the compaction of soils
in the field. Moisture contents as low as 0.25 per cent have been
reported to affect the density of a calibrated sand (passing No.
40, retained No. 60 sieve) by as much as 5 pounds per cubic foot
(32).

Table III also demonstrates that the existence of small values
of cohesion c in a sand thought to be cohesionless has a much
greater influence on ultimate strength values calculated by the
logarithmic spiral method for very narrow than for wide strip
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loads. When the width of the loaded strip is only 1 inch, a value
for cohesion ¢ = 1.0 p.s.i. increases the ultimate strength from
3.43 p.s.i. (for ¢ = 0), to 74 p.s.i., which is 21.6 times as large.
On the other hand, for a strip load 10 inches wide, a cohesion

= 1.0 p.s.i. increases the ultimate strength from 34.3 p.s.i.
(for ¢ = 0), to 107.8 p.s.i., which is only 3.1 times as large. The
possibility for unusual results due to unsuspected characteris-
tics of a cohesionless material is, therefore, much greater for
very small than for large loaded areas.

It has been shown in Table II that an unsuspected very small
value for cohesion ¢ might account for the large difference ob-
served by Davis and Woodward (25) between calculated and their
actually measured values of the ultimate strength of the cohesion-
less sand with which they were working. This difference might
also be explained by an increase in density throughout the volume
of sand influenced by the applied load, since an increase in the
density of the sand would be expected to increase its angle of in-
ternal friction. Consequently, both the density and angle of inter-
nal friction of the sand might have been greater throughout the
volume of sand under stress than tests made on the sand in bulk
had indicated. It can be calculated by the logarithmic spiral
method that, if due to an increase in density, the angle of inter-
nal friction throughout the stressed volume of sand were in-
creased to about 44° from the 36° actually reported, this would
account for the entire difference between the ultimate strength
of 3.4 p.s.i. calculated by the logarithmic spiral method described
in this paper, and the ultimate strength of 14.3 p.s.i. (14 to 20
p.s.i.) actually measured by Davis and Woodward (25), since the
ultimate strength calculated by the logarithmic spiral method for
a cohesionless sand with an angle of internal friction of about 44°
is 14.3 p.s.i., but is only 3.4 p.s.i. for similar sand with an angle
of internal friction of 36°. Consequently, for the cohesionless
sand with which Davis and Woodward were working, the difference
between calculated and their measured values of ultimate strength
noted in Tables II and III might be explained by the presence of an
unsuspected small value of cohesion c, by an increase in the angle
of internal friction ¢during the test itself, or it could be due to
the existence of unknown factors that are overloocked in the theo-
retical methods of calculation, or to the fundamental inability of
the theoretical methods to calculate ultimate strength values
equal to those actually measured.

It is instructive that Davis and Woodward (25) report that the
shape of the failure surface observed in their bearing capacity
tests is a logarithmic spiral.
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THE ULTIMATE STRENGTH OF A TWO-LAYER SYSTEM

So far the logarithmic spiral method has been applied to the
determination of the ultimate strength of homogeneous soils. In
this section an attempt will be made to apply this method to the
determination of the ultimate bearing capacity of a two-layer
system consisting of a bituminous surface resting on a great
thickness of base course. This pertains to the condition where
the critical logarithmic spiral failure surface along which shear
failure is assumed to occur is located entirely within the base
and surface course. This situation is not uncommon, since great
thicknesses of granular base are sometimes used for both air-
port and highway construction. For this case, the base course,
including sub-base, is considered to be so thick that the tendency
for failure within the base and surface is much greater than
within the subgrade.

Figure 9 considers the case of a bituminous pavement 2 inches
thick for which ¢ = 10 p.s.i, and ¢ = 40°, resting on a great depth
of base of cohesionless material. The ultimate strength of the
combined base and surface are to be investigated as the angle of
internal friction of the base course is varied from 30° to 40°, 50°,
and 60°,

The principal problem in connection with Figure 9, insofar as
this paper is concerned, is how the critical logarithmic spiral
failure curve is to be located through the two layers (surface and
base), each with quite different c and ¢ values. The approach to
this problem employed in this paper is illustrated in Appendix B,
but in essence it involves the determination of ¢ and ¢ values for
an equivalent homogeneous material having the same ultimate
strength as the layered system of the flexible pavement. The ulti-
mate strength of this equivalent homogeneous material can then be
calculated on the basis of a logarithmic spiral failure surface, as
described earlier in the paper, and illustrated in Appendix A.
The entire procedure requires a trial and error approach involv-
ing the use of successive approximations, and consists of the fol-
lowing steps, which, by way of example, are based on the condi-
tions of Figure 9(a) with ¢ = 45° for the base:

1. As the first step, ¢ and ¢ values must be assumed for the
equivalent homogeneous material that is to have the same ulti-
mate strength as the layered system of Figure 9. With more
experience, it may be possible to assume a set of c and ¢
values in this first step that are not greatly different from
the ultimate values determined at the end of the successive
approximation procedure. This may shorten the number of
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trials required. As indicated by the set of sample calcula-
tions for this particular example in Appendix B, however, the
c and ¢ values selected for the first trial were those of the
cohesionless base course itself (c = 0 p.s.i., ¢ = 45°). For
the first trial, therefore, the c and ¢ values assumed for the
hypothetical homogeneous material that is to be equivalent in
strength to the two-layer system of Figure 9(a) were ¢ = 0
p.s.i. and ¢ = 45°,

2. Determine the critical logarithmic spiral for a homogeneous
material for which ¢ = 0 p.s.i. and ¢ = 45°, by the method out-
lined in an earlier part of this paper and illustrated in Appen-
dix A. Calculate the ultimate strength q for this material,
which is found to be 318.5 p.s.i. (Appendix B).

3. Calculate the complete length of this spiral within the base
and surface, and also the exact length of each of the two por-
tions of the spiral that lie entirely within the surface course.
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4. Using the length of the spiral within the surface course where
¢ = 40°%, and the length of the spiral within the base course
where ¢ = 45%, calculate an overall arithmetic average value
for ¢ for the entire length of the spiral within the base and
surface. This gives a value for ¢ = 44°48’ (Appendix B).

5. Find an overall average value for cohesion c for the entire
length of spiral within the base and surface, on the basis that
¢ = 10 p.s.i. for the surface course, but is zero for the base
course. This can be done in either of two ways. First, by
spreading the cohesion ¢ = 10 p.s.i. for the part of the spiral
within the bituminous surface over the entire length of the
spiral as an arithmetic average; that is, the part of the length
of the spiral entirely within the bituminous surface multiplied
by cohesion ¢ = 10 p.s.i., must be equal to the total length of
the spiral within the base and surface multiplied by this over-
all average value for c¢. Second, by equating the sum of the
cohesion moments for the two parts of the spiral entirely with-
in the surface course, to the cohesion moment for the entire
spiral within the base and surface resulting from the use of
an overall average value for cohesion c. The limited number
of calculations made to date indicate that a lower value for
cohesion ¢ may always result from the use of the first method.
It might be generally favoured, therefore, since a lower value
for ¢ results in a more conservative value for ultimate
strength. For the present paper, the data for the various
diagrams have been calculated partly by one method, and in
part by the other. On the basis of the first method, the over-
all average value of cohesion c for the first trial spiral is
¢ = 0.404 p.s.i. (Appendix B).

6. For the second trial (approximation), determine the critical
logarithmic spiral for a homogeneous material for which
¢ = 0.404 p.s.i. and ¢ = 44°48’. Calculate the ultimate strength
q for this material, which is found to be 383.2 p.s.i.

7. Repeat steps 3, 4, and 5, on the basis of this second logarithmic
spiral and obtain average values for c and ¢ to be used for the
third approximation. The new average values found for ¢ and ¢
are c = 0.401 p.s.i. and ¢ = 44°48’ (Appendix B).

8. For the third trial (approximation), determine the critical
logarithmic spiral for a homogeneous material for which ¢ =
0.401 p.s.i. and ¢ = 44°48’ (Appendix B). For this spiral the
calculated ultimate strength q = 382.8 p.s.i.

9. Repeat for as many trials as are necessary to reduce the dif-
ference between the ultimate strength values for two succes-
sive approximations to an acceptable percentage.
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Table IV summarizes the c, ¢, and ultimate strength q values
for each of three trial critical logarithmic spirals resulting from
these successive approximations. It will be observed that the
ultimate strength values for succeeding approximations are al-
ternately on one side of the final value that would result from
many successive approximations and then on the other, Figure
21, with the differences between successive approximations
gradually becoming smaller. The difference in ultimate strength
g between the second and third successive approximations is
only 0.1 per cent. Consequently, in this case the second succes-
sive approximation provides a value for ultimate strength q that
would usually be sufficiently accurate for practical design.

On the basis of this logarithmic spiral approach, therefore,
the ultimate strength of the layered system of Figure 9(a) in
which a 2-inch bituminous surface, for which ¢ = 10 p.s.i. and
¢ = 40°, is placed on a great depth of cohesionless base course
for which ¢ = 45°, is considered to be equal to the ultimate
strength, q = 382.8 p.s.i., of a homogeneous material for which
¢ = 0.401 p.s.i. and ¢ = 44°48’ (third successive approximation
in Table IV).

Table IV. Ultimate Strength of Two-Layer System

For Surface Course ¢ = 10 p.s.i., ¢ = 40°
For Base Course c¢ = 0 p.s.i., ¢ = 45°
Thickness of Surface Course = 2 inches
Density of Base and Surface Course = 145 lbs./cu. ft. = 0.839 lbs./cu. in.
Values of ¢, @, and q for Successive Trials
Strip Loading
Width of Loaded Strip = L = 10 inches

Successive Cohesion Angle of Ultimate Strength
Approximation c Internal Friction q
No. p.s.i. é p.s.i.
1 0 45° 318.5
2 0.404 44°48’ 383.2
3 0.401 4448’ 382.8

The ultimate strength value, q = 382.8 p.s.i., for successive
approximation No. 3 in Table IV for a layered system consisting
of a two-inch bituminous surface for which ¢ = 10 p.s.i. and
¢ = 40° on a great depth of cohesionless base for which ¢ = 45°
can be read with reasonable accuracy from the graph in Figure
9(b). This graph indicates that the ultimate strength of the
layered system illustrated in Figure 9(a) increases rapidly as
the angle of internal friction ¢ of the base course is increased
from 30° to 40° to 50°. The layered system of Figure 9(a), for



144 McLEOD

which the angle of internal friction ¢ of the base course is 60°,
is probably of little more than academic interest insofar as nor-
mal aggregates are concerned, since its ultimate strength, q =
30,000 p.s.i., is far above the crushing strength of the grains
and could not be attained in practice.

Figure 9 emphasizes the increase in resistance to failure
along shear surfaces entirely within the base and bituminous sur-
facing that results from increasing the angle of internal friction
¢ of a great depth of cohesionless base course material beneath
a given bituminous surface.

It is instructive to compare Figure 9 with Figure 5 since both
pertain to systems in which the angle of internal friction ¢ of a
great depth of cohesionless base course material is varied. Fig-
ure 9 differs from Figure 5 only in that a two-inch bituminous
surface, for which ¢ = 10 p.s.i. and ¢ = 40° has been substituted
in Figure 9 for the top two inches of the base course in Figure 5.
For ¢ = 50° in the base course, the bituminous surface in Figure
9 has the effect of decreasing ¢ from 50° to 40° in the top two
inches of Figure 5, but at the same time introduces cohesion ¢ =
10 p.s.i. into this layer. Nevertheless, Figures 5(b) and 9(b)
show that when the base course has an angle of internal friction
¢ = 50°, the single-layer system of Figure 5 and the two-layer
system of Figure 9 both have an ultimate strength of about 1,000
p.s.i. Consequently, introducing a cohesion ¢ = 10 p.s.i. into the
top 2 inches of Figure 9(a) just balances the effect of decreasing
¢ from 50° to 40° in this layer, insofar as ultimate strength is
concerned. When the base course has an angle of internal fric-
tion ¢ = 40° in both cases, the ultimate strength of the single
layer system of Figure 5 is 105 p.s.i., while that of the two-layer
system of Figure 9 is 160 p.s.i., an increase of about 52 per cent.
In this case, since the angle of internal friction ¢ is the same for
both systems, the increase in ultimate strength is due entirely to
the cohesion ¢ of the two-inch bituminous surface of Figure 9.
For the case where the base course has an angle of internal fric-
tion ¢= 30°, the ultimate strength increases from 16 p.s.i. in
Figure 5 to 42 p.s.i. in Figure 9, an increase of about one hun-
dred and sixty per cent. This increase is due partly to increas-
ing ¢ from 30° to 40° in the top 2 inches, and partly to the intro-
duction of cohesion ¢ = 10 p.s.i. into this two-inch layer. The
small difference in density, 135 pounds per cubic foot for Figure
5, and 145 pounds per cubic foot for Figure 9, does not appreci-
ably affect the comparison that has been made. This comparison
between Figure 5 and Figure 9 illustrates the important effect
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system has on its ultimate strength.

Figure 10 illustrates the increase in ultimate strength of a
layered system consisting of a bituminous surface on a great
thickness of a given cohesionless base course for which ¢ = 40°,
as the thickness of a bituminous surface is increased from 0 to
6 inches. Two graphs are shown in Figure 10(b). The upper
graph, labelled “Full Cohesion,” assumes full development of

the cohesion of the bituminous surface at both ends of the
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logarithmic spiral. The graph labelled “Partial Cohesion” is
based on the possibility that the structure might have failed be-
fore any of the cohesion of the bituminous surface along the right
hand side of the spiral has been mobilized. In this latter case,

it is assumed that only the cohesion of the bituminous suriace
traversed by the left hand side of the spiral of Figure 10(a) is
fully developed; that is, the portion of the spiral just under the
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Figure 10(b) indicates that if the cohesion of the bituminous
surface is fully mobilized where it is traversed by both ends of
the spiral, the ultimate strength of the layered system of Figure
10(a) increases from 105 p.s.i. for zero thickness of bituminous
surface, to 260 p.s.i. for 3 inches, to 410 p.s.i. for 6 inches of
bituminous surface.

On the other hand, if the cohesion of the bituminous pavement
is uevelupeu only where it is cut by the 1eu hand side of the
logarithmic spiral, the graph of Figure 10(b) labelled “Partial
Cohesion” shows that the ultimate strength of this layered sys-
tem increased from 105 p.s.i. for zero thickness of bituminous
surface, to 120 p.s.i. for a thickness of 3 inches, to 160 p.s.i.
for a 6-inch thickness of bituminous surface.

Experimental data are required to determine which of the
curves of Figure 10(b), or whether some other relationship, ap-
plies in actual practice. Nevertheless, when the base course it-
self is not highly stable, Figure 10 indicates that a greater
thickness of well designed and constructed bituminous surface
of good stability may increase the overall resistance of the base

and surface to shearing failure under high tire pressures.

It should be particularly noted in Figure 10 that the angle of
internal friction for both the base and surface course is exactly
the same, ¢ = 40°. This selection was made deliberately to
demonstrate that the increase in ultimate strength with increase
in surface thickness is due entirely to the introduction of cohe-
sion c into the two-layer system by means of the bituminous
binder of the surface course. Consequently, Figure 10 provides
further evidence of the important infiluence that the presence of
cohesion c in the surface course, in the base course, or in both,

can have on the ultimate strength of a two-layer system.
It should be emnhasized that the ultimate gtrencth valueg that
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have been given in this section pertain only to resistance to fail-
ure along shear surfaces that lie entirely within the base and
surface.

SQUEEZING FAILURE OF BITUMINOUS SURFACE
BETWEEN TIRE AND BASE

Figure 11 demonstrates the possibility of another type of
flexible pavement failure that must always be investigated, par-
ticularly where high tire inflation pressures are involved.

Figure 11(a) shows that a great thickness of cohesionless
aggregate, for which ¢ = 47° and ¢ = 0, has an ultimate strength
of 467 p.s.i. Figure 11(b) indicates an ultimate strength of
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Fig, 11, Illustrating Failure Criteria For Flexible Pavements,

254 p.s.i. for a great thickness of bituminous surfacing material
for which ¢ = 10 p.s.i. and ¢ = 25°. Combining these materials in
the two-layered flexible pavement structure illustrated in Figure
11(c) results in an ultimate strength of 465 p.s.i., when the ulti-
mate strength is calculated by means of the logarithmic spiral
method.

However, Figure 11(d) demonstrates the effect of investigat-
ing the stability of the layered system of Figure 11(c) on an en-
tirely different basis. The possibility of failure of the bituminous
surface by squeezing out between the tire and base course is
examined by a method described in detail elsewhere (10, 11, 12,
13, 14, and 15). The results of this investigation are illustrated
in Figure 11(d). For the shape of the tire pressure distribution
curve and other conditions shown in Figure 11(d), these results
indicate that under any tire inflation pressure greater than about
100 p.s.i. this particular bituminous surface (c = 10 p.s.i., ¢ =
25°) would fail by being squeezed out between the tires and the
base course, since some portion of the tire pressure distribution
curve would be above the pavement stability curve; that is, the
applied pressure on some part of the bituminous surface would
exceed its stability. Consequently, in this case the ultimate
strength of the layered system is not 465 p.s.i. as given by the
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logarithmic spiral method, Figure 11(c), but is about 100 p.s.i.,

Figure 11(d), as given by the investigation of its resistance to

being squeezed out between the tire and base course. If the

conditions of design require a higher unit load than 100 p.s.i.

to be carried, Figure 11 indicates that a bituminous pavement

having a higher stability against failure by squeezing action

than that illustrated (¢ = 10 p.s.i. and ¢ = 25°) must be selected.
The data shown in Figure 11 demonstrate the necessity for

applying the three criteria outlined at the beginning of this paper

to every flexible pavement design problem.

1. Sufficient thickness to prevent subgrade failure.

2. Adequate shear strength in the layers close to the loaded area
to avoid failure along shear surfaces entirely within the base
and surface.

3. Examination of the stability of each layer against failure by
squeezing action.

It is obvious that a different ultimate strength rating will usually
be given by each of these three criteria, and that flexible pave-
ment design in general should be guided and controlled by the
ultimate strength value that is most critical.

FLEXIBLE PAVEMENT DESIGN IN GENERAL

From the general shape of a logarithmic spiral curve, it is
apparent that the lowest point of the critical spiral may be lo-
cated at an appreciable depth below the loaded area on the pave-
ment surface. For the corresponding wheel loads, tire pres-
sures, and pavement thicknesses recommended by design meth-
ods, or by charts of design curves, developed by the Canadian
Department of Transport (2, 3, 4, 5, and 6), the U.S. Corps of
Engineers (8), and others (1, 7, and 9), it has been found that the
critical logarithmic spiral will usually penetrate well into the
subgrade. Consequently, for ordinary flexible pavement design
requirements, the critical logarithmic spiral intersects the sur-
face course, base course, and subgrade. This means that the
ultimate strength method based on the critical logarithmic spiral
failure surface already described can be applied to flexible pave-
ment design in general.

In this case, the problem consists essentially of determining
¢ and ¢ values for an equivalent homogeneous material that will
have the same ultimate strength as that of the three layer system
of Figure 12, subgrade, base and surface, comprised of three
different materials, each with its own c and ¢ values. On the
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basis of these overall ¢ and ¢ values for the equivalent homogen-
eous material, the critical logarithmic spiral failure curve can
be established, from which the ultimate strength of the three-
layer system is then calculated. The procedure is similar to
that already outlined for a two-layer system. It is described in
Appendix C.

SUBGRADE

Fig. 12. Flexible Pavement Thickness Design,

In Table V, ultimate strength values are given for a three
layer system of bituminous surface, base course, and subgrade,
each having the c and ¢ values and the thicknesses listed. Three
strip loading widths were employed, 10, 12, and 22 inches. For
each strip loading width, the only variable is the value of cohe-
sion c of the base course, every other factor being held constant.
The data in column 5 demonstrate that the logarithmic spiral has
penetrated well into the subgrade in each case, since its maxi-
mum depth of penetration “z” considerably exceeds the combined
thicknesses of surface and base. Other investigators have indi-
cated that the ultimate strength for a circular bearing area is
from 20 to 30 per cent larger than for a strip load of the same
width (29, 30). Since it is usual to base airport and highway
pavement design on circular contact areas, ultimate strength
values for circular bearing areas are shown in the right-hand
column of Table V, and were obtained by increasing the ultimate
strengths for strip loading by 25 per cent.
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Table V. Ultimate Strength of Flexible Pavement

Surface Course c = 10 p.s.i., ¢=40°

Base Course c =Variable, ¢ = 45°

Subgrade c= 8p.s.i., ¢=10°
Strip Loading

Depth of :
Width of Thick £ Total Penetration Ultimate Strength
1¢th NCKNEsS O Thickness of Thickness of Critical .
Loaded Bituminous : : . Circular
. Base Course Base and Logarithmic Strip N
Strip Surface h ; Bearing
Inches Surface Spiral Below Loading
Inches Inches » . Area
Inches Surface “z p.s.i. )
Inches p.s.1.
Wken ¢ = 0 for Base Course
10 2 6 8 13 134 167
12 3 11 14 18.5 173 216
22 3 17 20 29.5 145 182
When ¢ = 1 p.s.i. for Base Course
10 2 6 8 13.2 141 176
12 3 11 14 18.4 184 230
22 3 17 20 29.6 152 190
When ¢ = 5 p.s.i. for Base Course
10 2 6 8 13.2 167 209
12 3 11 14 18.3 235 294
22 3 17 20 29.6 183 229

The data of Table V demonstrate that for the otherwise con-
stant conditions listed for each of the three loaded widths, the
ultimate strength of the flexible pavement structure increases
as the cohesion c value of the base course is increased from 0
to 1 to 5 p.s.i. The effect on the ultimate strength is small when
the cohesion ¢ of the base course is changed from 0 to 1 p.s.i.,
but the ultimate strength is increased by from 25 to 35 per cent
when the cohesion ¢ of the base is increased from 0 to 5 p.s.i.
{(for the cases covered by Table V). For example, for the flex-
ible pavement conditions illustrated by Figure 13, if all other
factors are kept constant, the incorporation of a binder into the
base course to change its cohesion ¢ from zero to 5 p.s.i. would
increase the ultimate strength of this particular flexible pave-
ment structure from 216 p.s.i. (when ¢ = 0) to 294 p.s.i. (when
¢ = 5 p.s.i.). This represents an increase of 36 per cent in ulti-
mate strength.

Consequently, on the basis of the logarithmic spiral method
described in this paper, Figure 13 and the data of Table V em-
phasize again that increasing the cohesion ¢ of any one layer of
the flexible pavement structure within the logarithmic spiral,
without sacrificing angle of internal friction ¢, results in an im-
portant overall increase in the ultimate strength of the structure.
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Fig. 13. Influence of Magnitude of Base Course Cohesion On
Ultimate Strength of a Flexible Pavement,

Influence of Base Course Quality
On Flexible Pavement Thickness Requivements

Figures 14(a) and 14(b) indicate the considerable reduction in
flexibie pavement thickness required to develop a specified ulti-
mate strength q = 112 p.s.i., as the angle of internal friction ¢
of cohesionless base course material is increased from 40° to
50°; that is, as the shearing strength of the base course is in-
creased. It should be emphasized in connection with Figure 14
that every factor is maintained constant except the shearing
strength and thickness of the base course.

Figure 14(b) demonstrates that as the angle of internal fric-
tion ¢ of the base course is increased from 40° to 50°, the re-
quired thickness of cohesionless base can be decreased from 12
to 7.2 inches, the developed ultimate strength for the three layer
flexible pavement system being 112 p.s.i. in all cases. This
represents a reduction in bagse course thickness of 40 per cent.

The results illustrated in Figure 14(b) seem reasonable,
since it would ordinarily be expected that for a given overall
ultimate strength requirement the thickness of base course could
be decreased as its quality (shearing strength) is increased. On
the other hand, actual field tests by the Canadian Department of
Transport and the U.S. Corps of Engineers tend to indicate that
flexible pavement thickness requirements are independent of the
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quality of the base course material. For example, the Corps o
Engineers permits no reduction in thickness if high quality base
course material is employed for the full depth of base and sub-
base, in place of materials ranging from lower quality at the
bottom of the sub-base to highest quality in the top layer of the
base.
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e 3 N

Fig. 14. Influence of Base Course Strength Characteristics
On Base Course Thickness Requirements.,

How are the results illustrated in Figure 14(b), indicating
that higher base course quality permits a considerable reduction
in flexible pavement thickness, to be reconciled with the findings
of the Corps of Engineers and Canadian Department of Transport
based on full scale field tests, that no reduction in thickness can
be permitted even when highest quality base course material is
employed for the full depth of sub-base and base? This diver-
gence between theory and practice would be explained if, as
seems probable, current construction methods are unable to de-
velop in the field the large difference in the angles of internal
friction of various base course materials that can be easily
demonstrated by laboratory tests. Base course materials with
high angles of internal friction ¢ usually consist of crushed
angular particles with rough faces. These resist compaction to
high density under the amount and type of compaction ordinarily
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having a lower angle of internal friction ¢, e.g. crusher run
gravels, are composed of more rounded particles with smoother
surfaces. These compact to relatively high density under the
usual compactive effort applied during construction. For the
usual base course materials ranging from crusher run gravel
to crushed stone, it is not unlikely, therefore, that fhe effective
angle of internal friction ¢ developed at the end of base course
compaction in the field is not greatly different whether the base
course materials show quite high or considerably lower angles
of internal friction ¢ in laboratory tests. If this explanation is
correct, because of inadequate compaction equipment or proce-
dure, a base course aggregate developing an angle of internal
friction ¢ of 50° in a laboratory test may have an effective angle
of internal friction ¢ of only 45° or less after compaction into a
base course in the field. Consequently, before the much smaller
thicknesses of base course materials with high angles of internal
friction, indicated by Figure 14(b) to be theoretically possible,
can be utilized with confidence in flexible pavement design, com-
paction equipment and compaction procedures must be developed
that will provide in the finished base course in the field the same
high angles of internal friction shown by laboratory tests.
Figures 14(a) and 14 (b) pertain to cohesionless base course
materials. Figure 14(b) demonstrates that if the angle of inter-
nal friction ¢ of a cohesionless base course material is 40° a
base course thickness of 12 inches is required for the conditions
illustrated by Figure 14(a). However, this thickness of base is
reduced to 7.2 inches if base course material with an angle of
internal friction ¢ = 50° is employed. Figure 14(c) indicates the
effect of adding a binder to develop cohesion ¢ in the base course
material for which ¢ = 40°. When c = 2.62 p.s.i. and ¢ = 40°, only
7.2 inches of base course are again needed for an ultimate
strength of 112 p.s.i. Consequently, for the conditions illustrated
by Figure 14, a bituminous bound base course 7.2 inches thick for
which @ = 40° and ¢ = 2.62 p.s.i. develops the same ultimate
strength, 112 p.s.i., in the flexible pavement structure as a whole,
as the identical thickness of cohesionless granular material hav-
ing an angle of internal friction of 50°. In this case, the intro-
duction of cohesion ¢ = 2.62 p.s.i. into a cohesionless material
for which ¢ = 40° confers on it the same strength as that devel-
oped by a cohesionless material for which ¢ = 50° This illus-
trates again the important effect that the introduction or exist-
ence of cohesion c in any layer seems to have on the ultimate
strength of a flexible pavement.
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Base course materials of very hig

angles of internal friction ¢ for cohesmnless aggregates) are
required in flexible pavements for jet aircraft for which tire
pressures may be 200 p.s.i., 300 p.s.i., or higher. In many areas
such high quality cohesionless base course materials are not
locally available. Figure 14 demonstrates that in this case base
courses of high shearing strength could be obtained by combining
aggregates having relatively low angles of internal friction ¢ with
bituminous or similar binders to provide the magnitude of cohe-
sion ¢ required for high stability. Practical verification of the
soundness of this solution is provided by the extraordinary
strength of sand-asphalt base and surface courses as compared
with the instability or lack of strength of the dune, beach, etc.
sands from which they are frequently made. As previously men-
tioned, this principle has been successfully employed for the
construction of sand asphalt surfaced roads and airports in
Nebraska (33), Florida (34), and elsewhere (35).

Influence of Bituminous Surface Thickness
On the Ultimate Strength of a Flexible Pavement

A problem sometimes debated by highway and airport engi-
neers is whether or not increasing the thickness of the bitumin-
ous surface itself substantially increases the overall strength of
a flexible pavement. Either curve of Figure 15, based on the
ultimate strength approach described in this paper, indicates that
the overall strength of a flexible pavement may be greatly in-
creased by increasing the thickness of the bituminous surface.
Like Figure 10, the “full cohesion” curve of Figure 15 assumes
complete mobilization of the cohesion c of each layer throughout
the full length of the spiral, while the “partial cohesion” curve
neglects cohesion c of the bituminous surface along the extrem-
ity of the spiral remote from the loaded area. The strength in-
crease is from 134 p.s.i. for zero thickness to 203 p.s.i. and 255
p.s.i. for the “partial cohesion” and “full cohesion” curves, re-
spectively, for a surface thickness of 6 inches, representing
strength gains of 51 and 90 per cent. Evidence will be presented
later indicating that the “full cohesion” curve may more nearly
represent the ultimate strength of a flexible pavement developed
under field conditions than the “partial cohesion” curve.

The increase in overall flexible pavement strength with in-
crease in surface thickness illustrated in Figure 15 is only pos-
sible when the bituminous surface course is sufficiently stable
within itself at each thickness to resist squeezing failure between
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Fig. 15. Influence of Thickness of Asphalt Surface On the
Ultimate Strength of a Flexible Pavement,

tire and base course under some lower applied load, as pre-
viously pointed out in connection with Figure 11.

Figure i5 demonstraies that overlays of well-designed bitu-
minous concrete can be very effective for increasing the ultimate
strength of flexible pavements that are beginning to show signs of
distress, Furthermore, the method described in this paper
makes it possible to calculate the ultimate strength of a flexible
pavement that is starting to show distress and the increase in
ultimate strength to be expected by constructing an overlay of
specified thickness of any given properly designed bituminous
concrete.
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Infiuence of Braking and Accelevation Stresses
on Flexible Pavement Thickness Requirements

Braking stresses are created between a tire and pavement
when the brakes are applied, while acceleration stresses, acting
in the opposite direction to braking forces, are developed when-
ever a vehicle is being accelerated. Because of the urgency
frequently associated with their application, braking stresses
are generally more severe than acceleration stresses.

Flexible pavements in service are subjected to direct braking
and acceleration stresses. The equivalent of these forces is also
exerted indirectly whenever a vehicle changes direction in a
horizontal plane, and when it moves on either an uphill or down-
hill gradient (the tangential component of its own weight), without
the application of either brakes or accelerator. Braking and ac-
celeration forces are usually applied in the direction of travel,
and they, therefore, tend to shove the pavement either ahead of
(for braking), or behind (for acceleration) the wheel.

It has been a relatively common observation for many years
that serious waving, rolling, or other distortion can develop at
the surfaces of flexible pavements at stop lights, bus stops, stop
signs, etc., where there is much stopping and starting of traffic.
These deformities result from braking and acceleration stresses
if the flexible pavement is otherwise adequately designed. The
same types of surface deformation are sometimes observed at
the entrance to curves where brakes may be applied to decrease
speed, and at the foot of a hill where the accelerator may be de-
pressed to gain or maintain speed as uphill travel is begun.
These examples demonstrate that braking and acceleration
stresses may frequently provide the most critical conditions of
design for flexible pavements that are to carry moving loads.
Consequently, the influence of acceleration and braking forces
on flexible pavement design should be investigated.

The surface distortion at the locations mentioned in the pre-
vious paragraph is sometimes due to movement entirely within
the bituminous surface itself, which may not have sufficient sta-
bility to resist braking or acceleration forces. When a vehicle
changes from downgrade to horizontal movement, or from hori-
zontal to upgrade, the change in direction of motion of the ve-
hicle exerts a larger than normal wheel or axle load on the pave-
ment at these points. It is well known that as the wheel or axle
load is increased, a greater thickness of flexible pavement is
necessary. At the locations mentioned, therefore, due to the
change in direction of vehicle movement, a greater thickness of
flexible pavement should be provided.
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In addition to the causes for pavement distortion at various
locations that have just been described, Figure 16 demonstrates
that wherever braking or acceleration stresses are applied, the
thickness of a flexible pavement should be increased to resist
the effect of these forces themselves. The reason for this be-
comes clear when Figures 16(b) and 16(c) are compared.

Figure 16(b) represents the condition of vehicle travel in a
horizontal plane at uniform speed. In this case, the applied pres-
sure is either the total wheel load or unit pressure exerted on
the contact area, and it acts in a vertical direction. Braking or
acceleration stresses are assumed to be negligible or entirely
absent. As soon as the brakes are applied, Figure 16(c) demon-
strates that in addition to the vertical wheel load of Figure 16(b),
a braking stress acting tangentially to the surface is added. It
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is apparent that this braking force increases the load moment
acting on the pavement structure, since the load moment (about
the origin of the logarithmic spiral failure curve) now consists
of the sum of the moments of the wheel load and of the braking
force. buubequeuuy, if equuuu ium is {0 be maintained, and
pavement failure avoided, the flexible pavement must develop a
larger reaction moment (also about the origin of the logarithmic
spiral failure curve) for the condition of Figure 16(c) (with brak-
ing stresses) than that of Figure 16(b) (w1thout braking stresses).
This larger reaction moment can be developed by either improv-
ing the quality (shearing resistance) of base course or surfacing
materials, or increasing their thickness. In Figure 16(c) this
greater reaction moment is obtained by increasing the thickness
of the cohesionless granular base course.

Figure i6{(d) indicaies that the increase in fiexibie pavement
thickness required to resist braking action depends upon the in-
tensity of the applied braking stress. The magnitude of the brak-

ing force is represented in Figure 16(d) by the friction value f.
For example, when f = 0.1, the braking force applied to the pave-
ment is 0.1 of the vertical pressure exerted by the tire; that is,
one-tenth of the wheel load. Similarly, when f = 0.3, the braking
stress being exerted is three-tenths of the wheel load. The
maximum friction value f that can be developed between pave-
ment and tire is, of course, the coefficient of friction. Any at-
tempt to apply a braking siress of iarger magnitude than that
represented by the coefficient of friction results merely in
skidding of the tire on the pavement.

To obtain the comnarative data needed for illustrati ing the
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influence of braking or acceleration stresses on flexible pave-
ment thickness requirements, the assumptions listed in Figure
16 have been made. Each of these assumptions is believed to be
reasonable.

Calculations by the logarithmic spiral method are easier to
perform on the basis of strip loading. It has been previously
mentioned that for cohesive soils the unit load that can be sup-
ported on a circular area is generally accepted to be from 20 to
30 per cent greater than that carried as a strip load (29, 30).
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assumed to be 25 per cent. This is also assumed to apply in
general to elliptical loading with the difference that the ratio of
elliptical to strip loading depends upon the direction of the strip
load relative to the principal axes of the elliptical contact area.
The assumption is made that the ultimate load that can be sup-
ported on an elliptical contact area is 115 and 135 per cent of



FLEXIBLE PAVEMENT DESIGN 159

the corresponding ultimate strip loads in the directions of the
transverse and longitudinal axes of the contact area. Conse-
quently, if a tire pressure of 100 p.s.i. represents the ultimate

load on an elliptical contact area, the corresponding ultimate
qhwn loads in the direction of fhn transverse and longitudinal
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axes are 87 and 74 p.s.i., respectively, Figures 16(b) and 16(c).
Figure 16(b) indicates the thickness of cohesionless base
course in a flexible pavement structure that must develop an
ultimate strength of 87 p.s.i., representing strip loading in the
direction of the transverse axis of the contact area. The re-
quired thickness of base is 5.4 inches when the bituminous sur-
face is 3 inches thick, giving a total thickness of fiexible pave-
ment of 8.4 inches, Figure 16(b). On the other hand, for an
ultimate strength of 74 p.s.i., representing strip loading in the

direction of the longitudinal axis of the elliptical contact area

as illustrated in Figure 16(c), Figure 16(d) shows that a base
course thickness of only 4.4 inches is required, which when
combined with the 3-inch bituminous surface gives an overall
flexible pavement thickness of 7.4 inches. Consequently, Fig-
ures 16(b), 16(c), and 16(d) indicate that for the condition of
stationary wheel loads, or for vehicle movement at constant
velocity, there is greater tendency for flexible pavement failure
in the direction of the transverse than of the longitudinal axis of
the tire contact area. This is in keeping with the observed per-

£ £ £1 31 4+
Iormance oOi 1ieXili€ pavemenis i in service.

When braking or acceleration stresses are applied, they are
normally exerted in the direction of the longitudinal axis of the
contact area, and not in the direction of its transverse axis. In
Figure 16(d), therefore, the flexible pavement thickness require-
ment in the direction of the transverse axis of the loaded area is
shown as a broken line parallel to the abscissa, indicating that
the thickness required to prevent failure in the direction of the
transverse axis of the contact area is independent of either brak-
ing or acceleration stresses.

It should be pointed out, however, that this is not strictly
correct, since in actual practice, as brakes or accelerator are
applied, the vehicle tends to rotate in a vertical plane, putting
more vertical load on the front wheels in the case of braking
stresses, and on the rear wheels for acceleration stresses.

This additional vertical load on front or rear wheels increases
with increasing intensity of braking or acceleration stresses (in-
creasing values of friction factor f, Figure 16(d)). This increas-
ing vertical pressure with increasing intensity of braking or ac-
celeration stresses requires some increase in thickness as f is
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increased. For actual traffic conditions, therefore, the broken
line graph in Figure 16(d), representing the thickness of flexible
pavement required to prevent failure in the direction of the
transverse axis of the contact area as braking stresses are ap-
plied, should have some positive slope. The increase in the in-
tensity of vertical pressure and of size of contact area due to
braking or acceleration stresses would both have to be measured
before the slope of the broken line could be calculated. In the
meantime, the horizontal slope given to this broken line in Fig-
ure 16(d) is probably not an unreasonable first approximation for
the comparative purposes for which it is employed.

As explained previously, the application of a braking or ac-
celeration stress increases the load moment (about the origin of
the critical logarithmic spiral) in the direction of the longitudi-
nal axis of the contact area; that is, in the direction of vehicle
travel, Figure 16(c). I flexible pavement failure is to be avoided
in this direction, this larger load moment must be balanced by
the development of a greater reaction moment within the flexible
pavement. This greater reaction moment can be provided by in-
creasing the thickness of base course, or bituminous surface, or
both. For the conditions represented by Figure 16, this greater
reaction moment is obtained by increasing the base course thick-
ness. Figure 16(d) indicates that as the braking or acceleration
stresses are increased to develop values of the friction factor {
between tire and pavement that are zero, 0.1, 0.2, and 0.3 of the
tire inflation pressure (contact area pressure), the thickness of
base course must be increased from 4.4 to 7.4 to 9.6 to 11.2
inches, while the total thickness of flexible pavement must be in-
creased from 7.4 to 10.4 to 12.6 to 14.2 inches. Consequently,
Figure 16(d) indicates that at relatively low breaking stresses,
flexible pavement thickness design for moving wheel loads tends
to be governed by stability requirements in the direction of the
longitudinal (direction of travel) rather than of the transverse
axis of the contact area. Furthermore, for the conditions it
represents, Figure 16(d) indicates that the flexible pavement
thickness required to support a moving wheel load for which the
tire inflation pressure is 100 p.s.i. is increased from 8.4 inches
when braking or acceleration stresses are absent, to 14.2 inches
when braking forces developing a friction factor f = 0.3 are
applied.

The distortion of flexible pavements that occurs with some
frequency at stop signs, stop lights, bus stops, etc., where there
is much stopping and starting of traffic, provides ample evi-
dence of the qualitative correctness of the conclusions indicated
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by Figure 16(d), and of the need for an appreciably greater thick-
ness of flexible pavement for locations where breaking and ac-
celeration stresses are severe, than for those long sections
where vehicles tend to move at a relatively uniform rate of speed.

Investigations by Nijboer (31) and by Goetz and Chen (36) have
demonstrated that the value of cohesion c being measured for a
bituminous paving mixture in a triaxial test becomes much higher
as the rate of strain or rate of loading is increased. This is also
true of soil materials to a lesser degree (37). With respect to
flexible pavement design, this means that a considerably higher
value of cohesion c for a flexible pavement structure will be
developed by moving than by stationary wheel loads of the same
weight.

The reaction moment of a flexible pavement consists of the
sum of the cohesion moment and the weight moment. The cohe-
sion moment is usually considerably greater than the weight
moment, Appendix C. The magnitude of the cohesion moment
varies directly with the value of cohesion ¢, Appendices A, B,
and C, and Table 6. Consequently, the larger the value of cohe-
sion c, the greater is the reaction moment developed by a given
flexible pavement structure. Since a higher value for cohesion c
is developed by moving than by stationary wheel loads, a larger
reaction moment is also developed within a given flexible pave-
ment by a moving wheel load than when it is stationary. Conse-
quently, all other conditions being equal, a smaller thickness of
flexible pavement will support a given wheel load in the form of
moving than of stationary traffic.

This is probably true even when braking or acceleration
stresses are applied to a vehicle moving at high speed for the
purpose of temporarily slowing down or speeding it up, but not
bringing it to a stop, since a much higher value for cohesion c
is being developed by the flexible pavement under these conditions
than occurs under the same wheel load when stationary. There-
fore, even though braking or acceleration stresses may be applied
temporarily, as long as the vehicle continues to travel at rela-
tively high speed, and is not brought to a stop, a smaller thickness
of given flexible pavement is probably adequate for a moving
wheel load than when it is stationary.

Consequently, insofar as flexible pavement design is con-
cerned, for given subgrade, base course, and bituminous surfac-
ing materials, and for a specified wheel load, the ultimate
strength method based upon a logarithmic spiral failure curve
described in this paper indicates that flexible pavement thickness
requirements increase in the following order for the traffic con-
ditions listed:



162 McLEOD

1. Vehicles moving at relatively uniform speed.

2, Stationary vehicles.

3. Bus stops, traffic lights, etc., where braking and acceleration
stresses are severe, and there is much stopping and starting
of traffic.

It might be asked whether or not Items 1 and 2 listed immed-
iately above should have their order reversed in the case of
heaviest highway traffic; that is, whether flexible pavement thick-
ness requirements for the repeated loadings of the highest inten-
sities of highway traffic should be greater for vehicles moving at
relatively high speed than when stationary. Sufficient evidence
does not seem to have been recorded or published to provide a
definite answer to this question as far as highway engineering is
concerned. However, in the related field of airport engineering,
current flexible pavement design requires a greater thickness of
flexible pavement for parking aprons, taxiways, and the ends of
runways, where aircraft are stationary or move very slowly, than
for the central portions of runways where aeroplanes are usually
travelling at high speed for take-off or landing. This greater
thickness requirement for aprons and taxiways than for runways
is maintained even for airports designed for capacity operations;
that is, for the highest possible intensity of aeroplane traffic.
Because of their relatively small area, airports probably offer
a better opportunity for a direct comparison of flexible pavement
thickness requirements for a high intensity of moving versus
stationary wheel loads than do highways. Insofar as evidence
from current airport engineering provides a guide to highway
design, it tends to support the order of flexible pavement thick-
ness requirements listed in the previous paragraph for moving
versus stationary wheel loads even for highways.

However, because airport runways are much wider than high-
ways, capacity operations on runways represent fewer repetitions
of load at any point on the paved surface than in the case of high
intensity traffic on highways. Consequently, for highway traffic
of greatest intensity, a highway engineer would probably be exer-
cising reasonable judgment if he selected the thickness require-
ments for stationary wheel loads to carry moving highway traffic
of the same weight. For smaller intensities of highway traffic,
the flexible pavement thickness would be correspondingly de-
creased.
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Each of the four tangents of the W.A.S.H.O. Test Road at
Malad City, Idaho, is constructed of five 300-foot sections of
flexible pavement. Each 300-foot section has the same overall
thickness throughout, but the thickness of the five consecutive
sections of each tangent is increased by 4-inch increments to
include 6, 10, 14, 18, and 22 inches. On two of the four tangents
the thickness of the asphalt surface is 2 inches, while on the
other two tangents it is 4 inches thick. However, regardless of
the thickness of the asphalt surface itself, the overall thick-
nesses of sub-base, base course, and asphalt surface are the
same on corresponding test sections on the four tangents. For
example, the test sections having an overall thickness of 6 inches
consist of either 4 inches of asphalt surface and 2 inches of
granular base course, or 2 inches of asphalt surface and 4 inches
of base course. Similarly, the test sections that are 14 inches
in overall thickness consist of either 4 inches of asphalt surface,
2 inches of granular base course, and 8 inches of granular sub-
base, or 2 inches of asphalt surface, 4 inches of base course, and
8 inches of sub-base.

When presenting the paper by Miller and Carey (38) for the
last annual meeting, Mr. W. N, Carey, Project Engineer for the
W.A.S.H.O. Test Road, mentioned that as a result of traffic test-
‘ing completed up to that time, for the smaller overall thicknesses
of flexible pavement (6, 10, and 14 inches), it appeared that the
two tangents with 4-inch asphalt surfaces were performing better
than the other two tangents where the thickness of asphalt sur-
face was 2 inches; that is, there had been less evidence of dis-
tress on corresponding sections where the asphalt surface was
4 inches rather than 2 inches thick.

Figure 17 has been prepared to demonstrate that this differ-
ence in the traffic performance of corresponding test sections
with 2-inch and 4-inch asphalt surfaces reported by Mr. Carey
is precisely the result that would be expected on the basis of the
ultimate strength approach to flexible pavement design that has
been described in this paper. The two diagrams on the left-hand
and right-hand sides of Figure 17 indicate that the overall thick-
ness of flexible pavement is 10 inches in both cases. However,
for the left-hand diagram, the flexible pavement consists of 2
inches of asphalt surface and 8 inches of granular base, while
for the right-hand diagram it consists of 4 inches of asphalt sur-
face and 6 inches of base. This construction is similar in its
thickness dimensions to one of the five test sections of the
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Fig. 17. Influence of Asphalt Surface Thickness on Ultimate
Strength For a Given Total Thickness of Surface and Base,

W.A.S.H.0. Test Road. It should be emphasized that the c and ¢
values for each layer, subgrade, sub-base, base course, and as-
phalt surface, have not been measured for the materials em-
ployed for the Test Road itself, and those shown in Figure 17
have been arbitrarily assigned.

The ultimate strengths of the two flexible pavement cross-
sections illustrated in Figure 17 were calculated by means of the
logarithmic spiral method previously described in this paper
(see also Appendix C). As listed in Figure 17 itself, the ultimate
strength values were found to be 200 p.s.i. for the flexible pave-
ment section with the 4-inch asphalt surface, but only 145 p.s.i.
for that with the 2-inch asphalt surface. Consequently, the cross-
section with the 4-inch asphalt surface in Figure 17 has 38 per
cent greater ultimate strength than that for which the asphalt
surface is 2 inches thick.

It should be emphasized again that the total thickness of flex-
ible pavement is the same for both cross-sections shown in Fig-
ure 17, t = 10 inches, and that only the individual thicknesses of
the base course and asphalt surface have been varied.

If the ultimate strength values obtained for the two flexible
pavement cross-sections illustrated in Figure 17 are even ap-
proximately representative of the difference in strengths of
corresponding test sections of the W.A.S.H.O. Test Road, they
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provide an explanation for the better performance of the tangents
with 4-inch asphalt surfaces, as compared with those where the
asphalt surface is only 2 inches thick, which has been reported
by Mr. Carey. For test sections such as those 6, 10 and 14
inches thick at the W.A.S.H.O. project, that are either under-
designed from the point of view of thickness, or of barely ade-
quate strength, with all other conditions being equal, it would be
expected that the test sections of higher ultimate strength would
show the superior performance, since the degree of underdesign
would be less for these. On the other hand, for those sections
that are of adequate strength or are overdesigned, which may be
true of the 18- and 22-inch thicknesses of the W.A.S.H.O. Test
Road, little difference in the performance of sections with either
2 or 4 inches of asphalt surface would be anticipated, even if the
ultimate strength of the sections with 4 inches of asphalt surface
were considerably greater. In this latter case, it becomes a
matter of comparing two different degrees of flexible pavement
overdesign, for which differences in service behaviour would not
be expected to develop under normal traffic, unless possibly after
a very long time.

It should be pointed out that increasing the thickness of the
asphalt surface would not always result in the large increase in
strength for the flexible pavement structure as a whole that is
illustrated in Figure 17, where the asphalt surface is relatively
strong, while the granular base is probably somewhat below
average strength. If a granular base of high stability (high angle
of internal friction ¢) were combined with a much weaker asphalt
surface (lower c and ¢ values), then, for a given overall depth of
base and surface, increasing the thickness of the asphalt surface
would result in a much smaller increase of strength for the en-
tire flexible pavement structure than that shown in Figure 17.
Variations in thickness of the asphalt pavement itself will also
have less influence on the ultimate strength of the overall flexible
pavement structure when the depth of granular base and sub-base
is unusually great. Consequently, the strength advantage to be
gained by increasing the thickness of the bituminous surface layer
depends upon the relative stabilities and thicknesses of the base
course and bituminous surfacing materials. In all cases, of
course, an engineer will wish to determine which practical com-
bination of thicknesses of base course (including sub-base) and
bituminous surface will provide an adequate flexible pavement
structure for the traffic anticipated, at the smallest overall cost.

Incidentally, Figure 17 provides another illustration of the
importance of the presence of cohesion ¢ in any layer on the
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ultimate strength of a flexible pavement. It will be noted that the
angle of internal friction @ is the same for both base and surface
courses, ¢ = 40°. The overall thickness of base and surface is
constant, t = 10 inches. In a sense, therefore, the asphalt sur-
face consists of the top layer of base course to which cohesion

¢ = 20 p.s.i. has been added. By adding cohesion ¢ = 20 p.s.i. to
the top 4 inches of the base course (diagram on the right-hand
side) instead of to only the top 2 inches of base (diagram on the
left-hand side of Figure 17), the ultimate strength of the flexible
pavement structure has been increased by 38 per cent in this
particular case.

Influence of Paved Shoulder on the
Ultimate Strength of a Flexible Pavement

The paved surface on each of the four tangents of the W.A.
S.H.O. Test Road in Southern Idaho is 24 feet wide, which pro-
vides two 12-foot lanes for the trucks applying test traffic of
specified axle loadings.

During his presentation of the paper by Miller and Carey (38)
on the progress of the W.A.S.H.O. project of the last annual meet-
ing of the Highway Research Board, Mr. W. N. Carey reported
that traffic testing during the first full year (1953) had produced
failure on portions of the thinner test sections of flexible pave-
ment. Generally speaking, however, these failures had been
largely confined to the outer wheel path extending from 4 to 6 feet
inward from the edge of the pavement. Relatively little failure
had occurred on the corresponding inner wheel path occupying
the inner six feet of the 12-foot traffic lanes on these same test
sections.

Carefully performed moisture and density tests spaced at
short intervals across the 12-foot traffic lane showed no differ-
ence in either subgrade or base course moisture and density
values between the inner and outer 6-foot sections. Consequently,
failure of the outer 6 feet of pavement adjacent to the shoulder
with no failure of the corresponding inner 6 feet could not be as-
cribed to differences in moisture contents and densities of the
underlying subgrade and base. Mr. Carey reported that after
studying these results, the Advisory Committee for the W.A.S.H.O.
Test Road recommended that the shoulders be paved adjacent to
portions of several of the test sections where failure had not yet
occurred. These sections of paved shoulder were added during
the latter part of 1953, and their influence will be observed dur-
ing the 1954 traffic testing.
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Figure 18 demonstrates that the uitimate strength approach
to flexible pavement design described in the present paper pro-
vides an explanation for

(a) the failure of the flexible pavement in the outer wheel path
but not in the corresponding inner wheel path of the 12-foot
traffic lanes at the W.A.S.H.O. project, and

(b) the improved flexible pavement performance to be anticipated
during 1954 traffic testing for the portions of test sections for
which paved shoulders have been provided.

Since there was no difference in subgrade or base course
moisture and density values, it might be asked first of all why
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Fig. 18. Influence of Paved Shoulder on Ultimate Strength of
Flexible Pavement.

failure developed in the outer wheel path (6 feet nearest to the
shoulder) of the thinner test sections, but not in the corresponding
inner wheel path (6 feet nearest the centre of the 24-foot pave-
ment). The ultimate strength concept based upon the logarithmic
spiral failure curves illustrated in Figure 18 provides an explana-
tion. The logarithmic spiral failure curves under the inner wheel
path (broken line failure curves in Figure 18) lié entirely within
the paved area. Consequently, they are able to develop the cohe-
sion c of the bituminous pavement at both extremities of the
logarithmic spiral. This is also true for the full line logarithmic
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spiral curve directed toward the centre of the pavement from the
outer wheel path.

On the other hand, the full line logarithmic spiral under the
outer wheel path directed toward the right of Figure 18 cuts
through the cohesionless gravel shoulder of the road. Only the
extremity of this spiral immediately below the outer wheel path
intersects the asphalt pavement, the other end of the spiral
terminating in the gravel shoulder. Consequently, this spiral
differs from those under the inner wheel path in that it can
mobilize the cohesion c of the asphalt pavement at only one of
its exiremities.

For the particular conditions illustrated in Figure 18, the
ultimate strength developed by the flexible pavement under the
inner wheel path, where both extremities of the logarithmic
spiral failure curve intersect the bituminous pavement, is 200
p.s.i. On the other hand, the ultimate strength developed by the
flexible pavement under the outer wheel path, where the logarith-
mic spiral failure curve intersects the gravel shoulder, is only
136 p.s.i. Consequently, the ultimate strength of the flexible
pavement under the inner wheel path is 47 per cent greater than
that under the outer wheel path for this particular case. This,
therefore, provides an explanation for the failure under the outer
wheel path of portions of the thinner test sections at the W.A.S.
H.O. Test Road, without accompanying failure under the corre-
sponding inner wheel path.

Figure 18 indicates that by paving the shoulder there would
be no greater tendency for failure in the outer wheel path than
for the inner wheel path at the W.A.S.H.O. project, provided
there were no differences in moisture and density values for the
underlying subgrade and base course. For Figure 18 it is as-
sumed that the thickness and all other characteristics of the
pavement placed on the shoulder are identical with those for the
paved road surface. It can be seen from the logarithmic spiral
failure curves under the outer wheel path of Figure 18 that by
paving the shoulder the ultimate strength of the flexible pave-
ment under the outer wheel path would become equal to that under
the inner wheel path (assuming no difference in subgrade or base
course moisture and density). Consequently, for the case repre-
sented by Figure 18, paving the shoulder would increase the ulti-
mate strength of the flexible pavement under the outer wheel
path by 47 per cent. It is to be expected, therefore, that the parts
of the thinner sections of flexible pavement at the W.A.S.H.O.
project along which a paved shoulder was constructed during the
latter part of 1953 will show marked superiority during the
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balance of the traffic testing program over those portions for
which the shoulder has been left unpaved.

It is obvious that the effective ultimate strength value for the
entire width of a paved roadway is the ultimate strength developed
by the flexible pavement under the weakest wheel path, which
Figure 18 indicates is most likely to be the wheel path nearest
the shoulder. This applies even to multi-lane highways, since
by convention the driving lane is the one nearest the road
shoulder.

From even casual observation of road performance, it has
been well known for many years that the portions of bituminous
pavements near the shoulders have usually shown greater ten-
dency for distress or failure than the centre of the pavement.
During the early stages of the development of low-cost paved
road construction about twenty to twenty-five years ago, failure
of the outer third (adjacent to the shoulders) of low-cost bitu-
minous pavements was particularly common, since the need for
base courses of adequate thickness had not become generally
recognized. This distress or failure of the outer portions of
bituminous pavements has usually been atiributed to the entrance
of moisture into the base and subgrade under the pavement edges.
The increased moisture content lowers the strength of the foun-
dation under the edges of the pavement, causing the outer portions
to deform or fail. On the other hand, Figure 18 indicates that
even if there were no loss of subgrade or base course strength
under the edges of bituminous pavements, there is greater ten-
dency for failure of the outer than of the inner wheel path solely
because of the presence of the usual earth or gravel shoulder,
the difference in ultimate strength being 47 per cent for the par-
ticular conditions illustrated.

Bituminous pavements have been placed on many roads which
are so narrow that the width of shoulder is only a foot or so, and
in extreme cases may even be measured in inches. In these
cases, the critical logarithmic spiral failure curves under the
outer wheel path intersect the ditch slope beyond the shoulder
and develop a smaller reaction moment than for the wide shoulder
condition of Figure 18. For these very narrow roads, therefore,
the per cent difference in ultimate strength values between the
inner and outer wheel paths could be considerably greater than
that illustrated by Figure 18 for roads with wide unpaved
shoulders, which is 47 per cent.

As a first impression, highway engineers may feel that the
construction of bituminous surfaces on road shoulders would add
considerable to the overall cost of a flexible pavement. However,
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as will be pointed out, a substantial decrease in the overall
thickness of flexible pavement for the main roadway appears to
be possible if the road shoulders were paved. Consequently, an
economic study of each individual project might indicate that for
many cases paved shoulders would not add materially, if at all,
to the overall cost.

It should be particularly noted in this connection that current
flexible pavement thickness requirements for highways are con-
trolled by the thicknesses needed to prevent failure of the outer
wheel paths. Since a uniform thickness over the cross-section
is normally employed, this means that the inner wheel path is
usually overdesigned. For example, for the conditions repre-
sented by Figure 18, if the thicknesses of base and surface shown
were just adequate for the outer wheel path, the inner wheel path
is overdesigned by 47 per cent. By paving the shoulder adjacent
to the bituminous pavement proper, the outer wheel path would be
protected against loss of strength due to entrance of moisture into
the foundation under the pavement edge, and would be materially
strengthened by the presence of the pavement on the shoulder.
Therefore, a paved shoulder would tend to make the flexible pave-
ment under the outer wheel path as strong as that under the inner
wheel path. Consequently, a substantial reduction in overall
flexible pavement thickness requirements for highways might be
possible if the shoulders were paved. This reduction in flexible
pavement thickness across at least the entire width of the bitu-
minous surface proper, usually 24 feet for a 2-lane pavement,
and frequently from shoulder to shoulder when the full depth of
base is carried from ditch slope to ditch slope, which may be 40
or more feet, might be sufficient to pay for a large portion or
even the entire cost of the paved shoulders. In addition, the in-
tangible, but very positive, value of firm paved shoulders to
motorists in general merits consideration for primary highways
particularly.

Insofar as airports are concerned, since most airplane traf-
fic is confined to the central third of runways, paving shoulders
or runways would not provide the substantial benefit that appears
to be possible for highways. Since traffic tends to concentrate on
the central third of the width of paved runways, the outer two
thirds of the pavement function as very wide paved shoulders in
a sense. This in itself may be a major factor contributing to the
well-recognized smaller flexible pavement thickness require-
ments for runways than for highways for capacity traffic of the
same wheel loading.
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Incidentally, Figure 18 and reported W.A.S.H.O. Test Road
experience to date furnish evidence that the curves of Figures 10
and 15 labelled “partial cohesion” provide ultimate strength
values that are much too conservative (too small). It will be re-
called that these “partial cohesion” curves represent the entire
ultimate strength that a flexible pavement can develop provided
that cohesion ¢ of the bituminous pavement is mobilized for only
the extremity of the critical spiral failure curve that is immedi-
ately below the loaded area. On the other hand, the “full cohe-
sion” curve includes the influence of cohesion c at both extrem-
ities of the spiral. If the “partial cohesion” curve of Figure 15
represented the entire ultimate strength developed by a flexible
pavement, it would make no difference to the ultimate strength
value whether the shoulder was paved or unpaved. Furthermore,
if the “partial cohesion” curve of Figure 15 indicated the total
ultimate strength that could be mobilized by a flexible pavement,
the ultimate strengths developed under either the inner or outer
wheel paths of Figure 18 would be exactly the same, and both
would be equal to 136 p.s.i., assuming no difference in founda-
tion strength for either wheel path. In this case, failure of the
flexible pavement under both the inner and outer wheel paths of
the W.A.S.H.O. Test Road would have been expected to tend to
occur in exactly the same amount. However, as previously
mentioned, Mr. W. N. Carey has reported (38) complete failure
of the outer wheel path of some sections of the W.A.S.H.O. proj-
ect, without any signs of distress appearing in the corresponding
inner wheel path. Consequently, the “partial cohesion” curves in
Figures 10 and 15 do not represent the entire ultimate strength
that can be mobilized by a flexible pavement. The marked dif-
ference in flexible pavement behaviour under the outer and inner
wheel paths at the W.A.S.H.O. project indicates that the ultimate
strength actually developed by a flexible pavement could be illus-
trated by a curve which at least lies between those labelled “par-
tial cohesion” and “full cohesion” in Figures 10 and 15. I
W.A.S.H.O. Test Road performance is typical of that of flexible
pavements in general, their ultimate strengths are apparently
closer to, and may even be represented by, the curve labelled
“full cohesion.” In other words, there is considerable evidence
that there is a tendency for cohesion ¢ of each layer intersected
to be mobilized throughout the full length of the critical logarith-
mic spiral failure curve, and not just over some portion of its
length near the loaded area.
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SAFETY FACTOR FOR ULTIMATE STRENGTH VALUES
FOR FLEXIBLE PAVEMENT DESIGN

The ultimate strength values derived on the basis of the log-
arithmic spiral method described in this paper could not ordi-
narily be employed directly for flexible pavement design, because
the deflection developed by the load at ultimate strength would
usually damage the bituminous surface. This is similar to the
situation in foundation design where, if the ultimate strength of
the underlying soil were employed for the design of footings, the
large ensuing settlement would normally damage the structure
seriously. When designing footings, a safety factor of about 3 is
frequently applied to the measured ultimate strength of the soil
(29).

Consequently, a factor of safety must usually be applied to the
ultimate strength of a flexible pavement as calculated by the log-
arithmic spiral method, to protect the bituminous surface against
damage by the excessive deflection that an applied wheel load
equal to the ultimate strength would cause. This immediately
leads to the problem of what the magnitude of this safety factor
should be.

Factors of safety in actual use for flexible pavement design
and construction for highways and airports are unknown. Never-
theless, they could be determined. Actual experience in many
areas has indicated what the flexible pavement design should be
for any given wheel load, subgrade support, and traffic intensity.
For design purposes, the size of the contact area is usually taken
to be equal to the wheel load divided by the tire inflation pres-
sure and is assumed to be circular in shape. By using the dia-
meter of this circle as the width of a strip loading, and knowing
the ¢ and ¢ values for subgrade, base course, and bituminous
surface, and the density of each layer, an ultimate strength value
for the flexible pavement can be determined by the logarithmic
spiral method. The ultimate strength for the strip loading can
be increased by from 20 to 30 per cent to give the corresponding
ultimate strength for a circular area of the same diameter as
the strip load width. The ratio of this calculated ultimate
strength for the circular area in p.s.i., to the tire inflation pres-
sure in p.s.i. employed for the original design, represents the
safety factor being used.

Since the flexible pavement thickness required for any given
wheel load and inflation pressure varies with traffic intensity,
the safety factor to be employed should also vary with the den-
sity of traffic. It appears that the safety factor being employed



FLEXIBLE PAVEMENT DESIGN 173

for flexible navements for airnort runwavs for canacitv gnera-

AVA LATALRAT pavTLliTiaius Ay r Sil Pl vays 201 Lapallily opelas

tions is somewhat smaller than that for highways for densest
traffic, since the concentration of traffic is greater on a heavily
travelled highway than on the busiest runway.

GENERAL COMMENTS

1. One of the criticisms of the logarithmic spiral method de-
scribed in this paper for determining the ultimate strength of
flexible pavements, that may occur to the reader,is that no
allowance has been made for the discontinuities to be expected
where the spiral crosses the boundaries between different
layers. This objection may be quite valid. On the other hand,
the lack of complete homogeneity of soils in embankments
and slopes does not seem to interfere with the reasonable
accuracy obtained when circular arcs are assumed for the
shape of the failure surfaces when analysing their stability.
In stability investigations, these circular arcs are assumed
to cut through soil layers of different shearing strengths with-
out discontinuity. In addition, as pointed out early in the
paper, the surface profile of the rutting and upheaval of a
flexible pavement that has failed under excessive wheel loads
is at least qualitatively similar tothat of a homogeneous soil
which has been overloaded by traffic. Consequently, the
shapes of the surfaces of shear failure cannot be greatly dif-
ferent in these two cases, and in this paper they are assumed
to be logarithmic spirals. It may be, therefore, that any ac-
tual discontinuities tending to occur wherever the logarithmic
spiral crosses a boundary between two layers of quite differ-
ent materials are not too important insofar as stability analy-
sis by the logarithmic spiral method is concerned.

2. When attempts are made to analyse the stability of a layered
system by assuming that discontinuities occur whenever the
logarithmic spiral crosses a boundary between two layers,
serious difficulties immediately arise. For example, differ-
ent origins might be expected for the portions of the spirals
in the several layers. The positions of the origins for the
various spirals through the different layers would depend upon
the amount of discontinuity assumed. In addition, about which
of these origins or other common point is the load moment to
be taken?

If a common origin is assumed, but the shape of the log-
arithmic spiral within each layer is established on the basis
of its c and ¢ values, a discontinuous failure curve of quite
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le shape is obtained. Furthermore, locating the re-
quired common origin for the lowest developed ultimate
strength by trial and error is such a time-consuming task
that this approach would be of little practical utility for design
purposes, particularly since the ultimate strength values it
provides do not seem to be greatly different from those ob-
tained by the much simpler method described in the present
paper.

Consequently, if discontinuities of the spiral at the boun-
daries between the layers of a flexible pavement are assumed,
other difficulties immediately arise that tend to discourage
the use of the method due to the excessive time and trouble
they involve, and they might even lead to greater error in the
calculation of the ultimate strength of a flexible pavement
than occurs if the discontinuities are disregarded, as has
been done in this paper.

. When analysing the stability of slopes by means of the circu-
lar arc method, the shearing resistance of the soil is assumed
to be mobilized simultaneously along the whole length of the
failure arc, which may be several hundred feet. Good agree-
ment between actual field performance and the stability values
calculated on this basis are usually reported. Consequently,
the assumption made in this paper that the shearing resist-
ances of the materials in the different layers of a flexible
pavement are mobilized simultaneously throughout the entire
length of a logarithmic spiral failure curve, which is at most
only a few feet in length, may not be unreasonable.

. A major conclusion indicated by the data of this paper is the
important contribution that the existence of cohesion ¢ in any
one or more layers makes to the ultimate strength of a flex-
ible pavement. Figures 10, 15, 17, and 18 testify to its im-
portant influence when cohesion ¢ occurs in the bituminous
surface but not in the base. On the other hand, the large in-
crease in ultimate strength that results from the introduction
of cohesion c into the base course material is illustrated in
figures 13 and 14.

Figure T has demonstrated that vinders that provide cohe-
sion ¢ for base course or surfacing materials may function as
lubricants rather than as cements, if an excess is employed.
In their capacity as lubricants, they tend to reduce the angle
of internal friction ¢ of the aggregate. It is well illustrated
in Figure 7 that the introduction of even a slight excess of
binder will result in a net loss of ultimate strength, if the in-
fluence of the reduction in ¢ is greater than the effect of the
increase in c that may still occur.
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In cases where the lubricant property of current common
binders such as clay or bituminous materials is too pro-
nounced, e.g. the stabilization of heavy clay soils with bitu-
minous biﬁuéi‘s, methods for Leuucn‘lg their lubricant quality
and increasing their effectiveness as plastic cements (higher
cohesion c) should be considered. As an alternative, new in-
expensive binders, that will perform more nearly as desired,
might be investigated.

. Since Professor Burmister’s layered system theory of flex-
ible pavement design is based upon the elastic properties of
the material in each layer, it will result in the same strength
rating for either cohesionless materials or those containing

a binder to give cohesion ¢, if their moduli of elasticity are
the same. The logarithmic spiral method empioyed in this
paper, on the other hand, indicates that while two materials,
one cohesionless, and the other cohesive with both ¢ and ¢
values, might have the same moduli of elasticity, the cohe-
sive material may develop either a higher or lower ultimate
strength than the other depending upon the relative values

for ¢ of the two materials. Therefore, while its modulus of
elasticity is the most important characteristic of the material
in each layer from the point of view of Burmister’s theory,
the ¢ and ¢ values are the most important properties of the
material in each layer of a flexible pavement when its strength
is analysed by the logarithmic spiral method. Consequently,
for the same layered system of base course and surfacing

materials, a different strength rating will probably be given

by Professor Burmister’s theory based upon elastic proper-
ties and a critical surface deflection, than by the logarithmic
spiral method based upon ultimate strength and a factor of
safety. No data are presently available for determining the
magnitude and range of the differences in safe loading given
by the two methods.

. While the calculations required for the logarithmic spiral
method described here are somewhat time-consuming, they
are relatively simple and straight-forward and can be quickly
mastered by any qualified, interested individual. The basic
charts presented in Appendix C materially reduce the amount
of calculation otherwise required. It is quite likely that addi-
tional basic charts can be devised that will reduce the time
spent on calculation still further. h
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. Three criteria for flexible pavement design are listed.

Heavier airplanes for air transport, and a greater number
of trucks with heavy axle loadings on highways, have in-
creased the thickness of flexible pavement required to pre-
vent subgrade failure.

. The high tire inflation pressures of jet aircraft have in-

creased the tendency for flexible pavement failure along
shear planes entirely within the base and surface course,
when the base course is of great depth.

. A method is described for calculating the ultimate strength

of a flexible pavement on the basis of the ¢ and ¢ values for
each layer, and assuming a logarithmic spiral failure curve.
In essence, this method involves the determination of ¢ and
¢ values for an equivalent homogeneous material having the
same ultimate strength as the layered system of the flexible
pavement.

. Examples of the application of this method are given for

calculating ultimate strength values for one-, two-, and
three-layer flexible pavement systems.

. This method indicates that the ultimate strength of cohesion-

less aggregates increases with increasing angle of internal
friction ¢. The ultimate strength of any given cohesionless
aggregate can be materially increased by incorporating a
binder to provide cohesion ¢, provided the lubricating quality
of the binder does not seriously reduce the angle of internal
friction ¢ of the aggregate.

Examples are included to show that the overall ultimate
strength of a flexible pavement containing a cohesionless
base course of low to moderate stability can be greatly in-
creased by incorporating a binder that introduces cohesion
¢ into the base course.

. The important contribution that the existence of cohesion ¢

in any layer, surface, base, or sub-base, makes to the ulti-
mate strength of a flexible pavement is one of the major con-
clusions indicated by the data of this paper.

. The utilization of this ultimate strength method to guide the

stabilization of both cohesionless and cohesive soils is de-
scribed, and the fact that it provides conclusions that are in
at least qualitative agreement with field experience is pointed
out.

This method indicates that either additional thickness of
flexible pavement, or higher quality sub-base, base course,
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and bituminous surfacing materials are required at bus
stops, traffic lights, etc., due to the severe braking and ac-
celeration stresses that occur wherever there is much stop-
ping and starting of traffic.
Calculations show that for the same overall thickness of
flexible pavement, an appreciably higher ultimate strength
will be developed by a 4-inch than by a 2-inch thickness of
well-designed bituminous surfacing.
For the usual flexible pavement on highways with earth or
gravel shoulders, this method shows that the ultimate strength
of the flexible pavement under the inner wheel path is likely
to be appreciably greater than that under the outer wheel path.
This is supported by the pavement failure pattern reported
for the W.A.S.H.O. Test Road.
Considerable evidence is presented to show that the ultimate
strength of a flexible pavement on a highway would be ma-
terially increased by providing paved shoulders.
An example is included to show that a flexible pavement with
a bituminous surface of low stability may fail because the
bituminous surface is squeezed out between tire and base
course, rather than by shearing failure along a logarithmic
spiral through surface, base, and subgrade; that is, squeez-
ing failure of a bituminous surface of low to moderate sta-
bility may occur under a smaller applied load than would be
required to cause failure along the critical logarithmic spiral
through surface, base, and subgrade. This example warns
that all three of the criteria listed at the beginning of this
paper must be kept in mind when designing a flexible pave-
ment.
To summarize its most important findings very briefly, this
study indicates that the ultimate strengths of flexible pave-
ments could be greatly increased, or conversely, their over-
all thickness requirements could be materially reduced by,
(a) the proper use of binders either to introduce cohesion ¢
into base course materials, or to increase any existing

c value they may possess,

(b) increasing the thickness of well-designed bituminous
surfaces, and
(c) paving the shoulders of highways.

Economic studies would indicate the projects for which
the application of any one or more of these three major find-
ings would lead to satisfactory flexible pavement perform-
ance at lower overall cost.
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16. Appendices A, B, and C contain sample calculations illus-
trating the application of the ultimate strength method based
on logarithmic spiral failure curves to actual flexible pave-
ment design problems.
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APPENDIX A

Sample Caiculation for Ultimate Stvengih of a Homogeneous
Soil by the Logarithmic Spival Method
The objective of this sample calculation is the determination of the maxi-
mum applied strip load that the homogeneous soil can support without failure

for the conditions illustrated in Figure 19, assuming the failure curve to be a
logarithmic spiral.

[n)

DENSITY
I35LBS./CU.FT.

Fig, 19. Illustrating the Logarithmic Spiral Method for Calculating the
Ultimate Strength of a Homogeneous Soil.

The method requires balancing load moment against reaction moment for
the incipient failure (equilibrium) condition. A critical logarithmic spiral is
associated with the maximum load that can be applied. The origin of this
critical spiral is determined by the trial and error method. Barber (28) has
published three tables of basic data concerning the logarithmic spiral that
greatly facilitate a number of the calculations that must be made.

For this sample calculation, the following conditions are given (Figure
19):

Strip Loading

Width of Loaded Strip = L = 10 inches

& =300

¢ =5p.s.i.

Soil Density = w = 135 pounds per cubic foot
The following information is required:

(1) Ultimate strength q of the soil in p.s.i.
(2) Depth z of the deepest penetration of the critical logarithmic spiral.
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As previously shown, the equation for a logarithmic spiral is

r =r0e9tan¢ (1)
where
r, = the initial radius vector
r = any other radius vector
0 = angle between the two radius vectors r, and r, measured in radians
e = the base for natural logarithms, 2.71828
¢ = the angle of internal friction of the material subjected to load

The reaction moment consists of a weight moment plus a cohesion moment.
The weight moment is due to the greater weight of material above the spiral to
the right than to the left of the ordinate through its origin. The cohesion mo-
ment results from the shearing resistance due to cohesion ¢ acting along the
length of the spiral. The calculation of the weight moment will be illustrated

first.

Step 1

Assume for the first trial that the centre of the critical spiral lies on a
radius vector through the left extremity of the loaded area making an angle
6, = 30° and at a horizontal distance B to the right of the left extremity of
the loaded area, Figure 19.

Step 2

Calculate values for —J- sin 0, 2. m- 8, 60, 1, and r?, all of which are
required for determining (t’.he welghtomoment

By substitution in equation (1), it is found t.hat = 1.35 (see also Barber’s
Table A, which is based on equation (1), and gives va.lues of —o for different

values of @ and ¢).
sin 6, = sin 30° = 0.5

To evaluate ;1, solve the following identity by trial and error.
]

r, . r, .
~lgin §, = Zsin (m- §,)
ry Ty

from which
L2 - 5.18
Ty
and
- 6, = 6.8°

6, = 180° - 6.8° = 173.2°

it
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From Figure 19 by inspection

1
o= () (B) - ) (s3e) - o0
0

r,® = 0.621B°

Step 3

Barber (28) lists the following equation for the moment of a sector of a
logarithmic spiral,

M=3—:12§;—ﬁ,—0—[e39ta“¢ (sin@ + 3cos @ tan @) - 3tand] (2)

and in his Table C has tabulated values for % for a wide range of values of
6 and @. o

The weight moment for the first trial spiral, 6, = 30°, is calculated as
follows:

it

15.69 B® w (Barber’s
Table C (28))

0.16 B w (Barber’s
Table C (28))

Weight moment of triangle ODJO = B (B tan g,) B (w) =0.10B*w
2 17\3

Weight moment of spiral sector OADMGO

Weight moment of spiral sector OADO

it

B tang
2)3

227 B w
Weight moment of section DMGD = Mg ,pymco + Meoapo

Weight moment of triangle OJGO (Btan g, cot (- 8,)Fw

1]

+ Mopso - Mosco
1569 B*w + 0.16 B3w=0.10B*w

-22TB*w
13.68 B’ w

Therefore, the required value for the weight moment for the first trial
spiral = 13.68 B® w.

Step ¢

The cohesion moment for the length of the first trial spiral actually in the
soil must now be calculated.

The moment of the length of a section of a logarithmic spiral is equal to
twice the area subtended by the section from its origin. Barber (28) lists the
following equation for the area of a sector of a logarithmic spiral,

Ao @8amd ) @)



184 McLEOD

and in his Table B has tabulated values for r—Anz for a wide range of values of
6 and ¢.
Consequently,
cohesion moment = 2c¢ (area of sector of spiral)
2c (area QADMGO - area OADO)
13.78 r,2 (Barber’s Table B (28))

Area of sector of spiral OADMGO

RPN S Y 1 ATV
- 1" U1 Spllal VADVU

h

0l
=]
d
(=]
e

-]
-
[+4]
<)
o]
z
(/]

from which

cohesion moment = 2c (13.78 r,2 - 0.36 ry?)
=26.84r?c
but
r, = 0.853 B (See Step 2 above)

Therefore, the required value for the cohesion moment for the first trial
spiral = 19.54 B2 c.

Step 5
Consequently, ior the first trial spiral

Total reaction moment = weight moment plus cohesion moment

13.67 B3 w + 19.54 B ¢

Step 6

Repeat the calculations for Steps 1 to 5 to obtain similar expressions for
the total reaction moment when 6, is assumed to be 35°, 40°, 45°, and 50°.
These are summarized in Table VI.

It should be pointed out in connection with Table VI that the expressions
obtained for the reaction moments when assumed values for 6, = 30° 35°, 40°,
45°, and 50°, will always hold for a homogeneous soil for which ¢ = 30°, re-
gardless of the value of cohesion ¢. Consequently, the reaction moment ex-
pressions listed in Table VI do not again have to be calculated as long as the
angle of internal friction ¢ = 30° for a homogeneous soil. Similarly, other
expressions for reaction moments for assumed values of 6, need to be calcu-
lated only once when ¢ = 40° and so on.

It will be observed that reaction moment expressions are given for as~
sumed values of 6, in 5° intervals in Table VI. A limited number of calcula-
tions indicate that this results in values for ultimate strength that may be
sufficiently accurate for practical design.

Step 7

For this sample caiculation it has been assumed that ¢ = 5 p.s.i., ¢ = 30°,
and w = 135 pounds per cubic foot. By substitution of these values for w and
c in the reaction moment expressions in Table VI, the minimum reaction
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moment appears to occur for 8, = 40° and is given by the expression
11.80 w B® + 18.81 B? c.

It should be noted, however, that each reaction moment expression in
Table VI contains the term B?® in the weight moment portion, and B? in the co-
hesion moment item. (In Figure 19, B is the horizontal distance from the left

hand extremity of the loaded area to the ordinate through the origin of the
spiral, and is given by DJ.) The value of B (see Step 10 below) varies some-
what with the values of ¢, ¢, and §,. Consequently, the minimum reaction
moment obtained by substituting values for ¢ and w in tables of reaction mo-
ments such as Table VI should be checked by substituting the value for B cal-
culated for reaction moment expressions at and on each side of this apparent
minimum, to ensure that the minimum reaction moment has been determined.

In this particular case, substitution of the values for w and ¢ gives a mini-
mum reaction moment that is unchanged by the values found for B.

Therefore,

the minimum reaction moment = 11.80wB® + 18.81B%c

Step 8

From inspection of Figure 19, and since L = 10, it is apparent that
Load moment = (Lp) (B - %) = 10p (B - 5)
Step 9
Equating the load moment to the minimum reaction moment gives
10p (B - 5) = 11.80wB3 + 18.81B%
which, upon rearranging, becomes

_ 11.80wB® + 18.81B% @)
p= 10 (B - 5)

but
w = 135 pounds per cu. ft. = 0.0783 pounds per cu. in.
and

c = 5 p.s.i.
Substitution of these values for w and c in equation (4) gives

_0.92 B® + 94.05 B? 5)
p= 108 - 5)

Step 10

In equation (5), p = unit applied load, while B = the horizontal distance
from the left extremity of the loaded area to the ordinate through the origin of
the critical logarithmic spiral. It is necessary to find the value for B that
will result in the minimum value for p; that is, to find the origin of the spiral
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that will provide the smallest ultimate strength q. This is obtained by differ-
entiating equation (5) with respect to B, equating the derivative to zero, and
solving the resulting quadratic equation for B.

Differentiating equation (5), simplifying, and equating the resulting equa-
tion to zero, gives

dp _ .. -
B - B? + 43.6 B - 511.1 =0 (6)

Solving equation (6) for B gives
B = 9.6 inches.

Consequently, the origin of the required critical logarithmic spiral is lo-
cated on the radius vector making an angle 6, = 40° at the point of intersec-
tion of this radius vector with the ordinate spaced 9.6 inches to the right of
the left hand extremity of the loaded strip, Figure 19.

Step 11

The ultimate strength q is obtained by substituting the value 9.6 for B in
equation (5), and solving for p, which gives

P = 206 p.s.i.

Therefore, the ultimate strength q for a homogeneous soil for which
¢ =5 p.s.i. and ¢ = 30° and for the other conditions illustrated in Figure 19,
is 206 p.s.i.

Step 12

To find the depth z of the deepest penetration of the critical logarithmic
spiral below the ground surface.
From Figure 19,

Angle OMR = 90 - ¢, since the tangent to a logarithmic spiral always
makes an angle of 90 - @ with the radius vector at the
point of tangency.

Also,
Angle OMR = 180 - g,
Consequently,
9 - ¢ =180 - @,
or
6, =90+ ¢
In addition,
z+h=r,cos (8, - 90°) = r, cos ¢

but,

h = Btan @,
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Therefore,
z = r,cos ¢ - Btan 6, (7

The value of each term in equation (7), except r,, has already been
evaluated.
cos ¢ = cos 30° = 0.866
B = 9.6
tan @, = tan 40° = 0.8391

r, can be evaluated from the general equation for the logarithmic spiral,

r, = roefz B¢ (8)

for which
r, = 0.870 B = (0.870) (9.6) = 8.35

6, =90 + ¢ = 90 + 30 = 120° = 2.0944 radians

z
tan ¢ = tan 30° = 0.5774

]

Substituting these values in equation (8) and solving, gives
r, = 28.0 inches.

All terms on the right hand side of equation (7) have now been evaluated.
Substituting these values in equation (7) gives

z = (28.0) (0.866) - (9.6) (0.8391) = 16.2 inches.

Consequently, the maximum penetration of the critical logarithmic spiral
below the ground surface, z, is 16.2 inches.

APPENDIX B

Sample Calculation for the Ultimate Strength of a Two-Layer
System by the Logarithmic Spiral Method

The objective of this sample calculation is the determination of the maxi-~
mum applied strip load that a two-layer system consisting of a bituminous
surface on a great depth of base course can support without failure for the
conditions illustrated in Figure 20, assuming the failure curve to be a log-
arithmic spiral.

In essence, the method employed requires the determination of ¢ and ¢
values for an equivalent homogeneous material having the same ultimate
strength as the layered system. After these c and ¢ values have been deter-
mined, the ultimate strength of the equivalent homogeneous material can be
obtained by the method outlined in Appendix A. It is assumed, of course, that
this method is capable of providing ¢ and ¢ values for an equivalent homo-
geneous material having the same ultimate strength as the layered system.
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Fig. 20, Illustrating the Logarithmic Spiral Method for Calculating the
Ultimate Strength of a Two-Layer System of Flexible Pavement,

There is a different material in each layer of the two-layer system of
Figure 20, and each has its own ¢ and ¢ values. To find the values of ¢ and ¢
for an equivalent homogeneous material having the same ultimate strength as
the two-layer system, the method of successive approximations is employed,
assuming in all cases that the failure curve is a logarithmic spiral.

As the first step in this method, single values for ¢ and ¢ for the equiva-
lent homogeneous material are assumed, and the critical logarithmic spiral
is determined as described in Appendix A. Based on the actual values of ¢
and ¢ for each layer traversed by the spiral, overall average values for ¢
and ¢ assumed to be acting along the full length of the spiral can be calcu-
lated. These calculated average values for ¢ and ¢ will usually be different
than those arbitrarily assumed for this spiral. A second critical spiral is,
therefore, determined, based on a homogeneous material having the average
values for c¢ and ¢ calculated for the first spiral. Using the procedure just
outlined for the first spiral, overall average values for c and ¢ acting along
the full length of the second spiral can be calculated. Using this second set
of average values for ¢ and ¢, a third critical spiral is determined, from
which a third set of overall average values for ¢ and ¢ can be calculated, and
used for establishing the fourth spiral. This process can be repeated as often
as required.

As illustrated in Figure 21, each successive spiral approaches more
nearly to the ultimate spiral that would result from many successive approxi-
mations. Table IV demonstrates that the differences in overall average values
for ¢ and ¢, and in the values of ultimate strength, become progressively
smaller between successive approximations. Consequently, the number of
successive approximations to be used in any given case depends upon the de-
gree of accuracy needed for practical design. For the conditions covered by
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Fig. 21, Illustrating Relative Positions of Logarithmic Spirals Resulting
from Successive Trials When Applying the Method of Successive Approxima-

tions,

Table IV, even the second successive approximation would provide the accur-
acy required.

The successive steps required for the application of this method will be
outlined in a sample calculation based on the following conditions illustrated

in Figure 20.
Strip Loading
Width of Loaded Strip = L. = 10 inches
For Surface Course, ¢ = 10 p.s.i., ¢ = 40°
For Base Course, ¢ = 45%, ¢ = 0
Thickness of Surface Course = 2 inches
Density of both layers = w = 140 lbs./cu.ft. = 0.081 lbs./cu.in.

The following information is required:

(1) Ultimate strength q of the two-layer system in p.s.i.
(2) Depth z of the deepest penetration of the critical logarithmic spiral.

The successive steps required for the determination of the ultimate
strength of the two-layer system will be described first.

Step 1

Arbitrarily assume c and ¢ values for the homogeneous material that is
to have the same ultimate strength as that of the given two-layer system.
With more experience, it may be possible to assume a set of ¢ and ¢ values
in this first step that are not greatly different from the ultimate values for c
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and ¢ determined at the end of the successive approximation procedure.
These will be intermediate between those for the surface course and the base
course; that is, ¢ will be somewhere between 0 and 4 p.s.i., and ¢ somewhere
between 40° and 45°. Since the angles of internal friction ¢ of the base and
surface course are not greatly different, the c and ¢ values for the base
course will be selected for the first approximation in this case.

The arbitrarily assumed values for ¢ and ¢ for the equivalent homogene-
ous material for the first step, therefore, are ¢ = 0 p.s.i. and ¢ = 45°.

Step 2

Determine the critical spiral for a homogeneous material for which ¢ =
0 p.s.i. and ¢ = 45°, by the trial and error method outlined in Appendix A.
The ultimate strength q for this homogeneous material as calculated from the
critical spiral = 318.5 p.s.i. (Table IV).
Step 3

On the basis of the actual values of ¢ and ¢ in each of the two layers
traversed by this spiral, determine overall average values for c and ¢ as-
sumed to be acting along the full length of the spiral. The overall average
value for ¢ will be calculated first.

Step 4

Calculate the total length of this first spiral (below ground level), and also
the length of each of the left-hand and right-hand portions of the spiral lying
entirely within the surface course.

The length of the arc DMG of the spiral is found by integrating the follow-

ing equation:
tan 6
Length of arc DMG = -2 6+ 1 [e@tand] ©
tan 6,

By the procedure of Step 2, Appendix A,

r, = 4.965 inches

6, = 53°12° = 0.9285 radians

6, = 174°30’ = 3.0457 radians
tan ¢ = tan 45° = 1.000

Substituting these values in equation (9) and simplifying,
Length of arc DMG = 129.856 inches
To find length of arc of spiral DE, angle.at must be first evaluated:

B = 7.500 inches (Procedure of Appendix D)
OJ = Btan ¢,
tan §, = tan 53012’ = 1.33673
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0J = (7.500) (1.33673) = 10.025 inches
OH = OJ + 2 inches = 12.025 inches
911 = sin o
OE
Also
OE = rye®tan® _ 4 965 e
Then
s(i)nHa - 4.965 @
or
sina e = lfzggg - 2.42195 (10)

Solving equation (10) by trial and error gives

o = 59°19° = 1.0353 radians
: _rojta.n2¢+1 ftan PO
Length of arc DE = fan g fe ]01 (11)

Substituting known values for each term on the right-hand side of equa-
tion (11) and simplifying gives

Length of arc DE = 2.003 inches
By a similar series of calculations, it is found that
Length of arc FG = 3.237 inches

Therefore,

Total length of spiral

. . = 2.003 + 3.237 = 5.240 inches
in bituminous surface

Total length of spiral ___ ___ oA ..
: hid b = 129.856 - 5.240 = 124.616 inches
in base course
Step 5
To obtain the overall average value for ¢ along the whole spiral DMG,

(5.240) (¢ = 40°) + (124.616) (¢ = 45°)

b = (5.240)(40) + (124.616) (45)
av - 129.856

44°48’

it

(129.856) ¢,

Therefore, the overall average value for ¢ along the length of the first
spiral is 44°48°.
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Step 6

To obtain the overall average value for cohesion c along the whole spiral
DMG,

(129.856) c,,, = (5.240) (c = 10) + (124.616) (c = 0)
i aan) f4n) fana nan\ In)
c.. = 0.240) (10) + (124.616) (0)
av 116.16
= 0.4035 p.s.i.

Therefore, the overall average value for cohesion c along the length of the
first spiral is 0.4035 p.s.i.

Step 6 (Alternative)

As an alternative to the method just given in Step 6, an average value for
cohesion c can be obtained by equating the sum of the cohesion moments for
the two portions of the spiral, DE and FG@G, entirely within the surface course,
to the cohesion moment for the entire spiral, DMG, resulting from the use of
this overall average value for cohesion c.

The general equation for the cohesion moment of an arc of a logarithmic

spiral is

0
cohesion moment of arc of spiral = [ 2 0 tam‘i’] z (12)

2 ta

n the conditions for this sample calculation, Figure 20, cohesion ¢ =
10 p.s.i. for the portion of the spiral within the bituminous surface, and ¢ = 0
for the base. Consequently, cohesion moments for the different parts of the
spiral can be calculated.

< £ 4L anl A

. er,2? Qtan ¢
Cohesion moment for arc DE = e? ] (13)
2 tan¢ [ 6,
Substituting known values for each term on the right hand side of equation
(13), and simplifying, gives
Cohesion moment for arc DE = 187.9 inch lbs.
2 6
s - cr 2 GBtan ¢ 2
Cohesion moment for arc FG = 52— ) [e ]ﬂ (14)

Substituting known values for each term on the right-hand side of equation
(14), and simplifying, gives

Cohesion moment for arc FG = 2366 5 inch lbs.

C 9 o
Cohesion moment for arc DMG = [e2 tan‘35] z (15)

av
2ta¢

Substituting known values for each term on the right hand side of equation

B)Y and aimnlifuine civag
J/, anQ simpaiiying, gives,
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Cohesion moment for arc DMG = 5369.0 C.o inch lbs,

Equating these cohesion moments,

5369.0c,, = 187.9 + 2366.5 = 2554.4
for which,

2554.4 .
C.y = 53600 - 0.476 p.s.i.

o

Consequently, the overall average value for cohesion c along the length of
this first spiral, as obtained by the moment method, is 0.476 p.s.i.

Step 7

Since the overall average value for cohesion c obtained as an arithmetic
average is somewhat smaller than that given by the moment method, it is
used here because it is more conservative.

Average values for ¢ and ¢ given by the first spiral (first approximation),
which are to be used for the spiral representing the second approximation,
therefore, are

0.404 p.s.i.
44°48

Cc

¢

It will be observed that these average values for ¢ and ¢ calculated for
the first spiral are somewhat different from the values of ¢ = 0 p.s.i. and
@ = 45° that were arbitrarily assumed for its construction.

The method of successive approximations must, therefore, be continued
until the overall average values for c and ¢ calculated for any spiral are very
nearly the same as the values of ¢ and @ used for its determination. Ex-
pressed in another way, this method must be continued until the overall aver-
age values for ¢ and ¢ calculated for spirals representing two successive ap-
proximations are quite close to each other (Table IV and Figure 21).

[0}

Step 8

Determine the critical logarithmic spiral (second successive approxima-
tion) for a homogeneous material for which ¢ = 0.404 p.s.i. and ¢ = 44°48’, by
the trial and error method outlined in Appendix A. The ultimate strength q
for this homogeneous material as calculated from this second critical spiral
= 383.2 p.s.i. (Table IV).

Step 9

Calculate overall average values for ¢ and ¢ as given by this second
critical spiral, using the procedure described in Steps 4, 5, and 6. These
overall average values are found to be ¢ = 0.401 p.s.i. and ¢ = 44°48’. These
values are used for the third successive critical spiral.
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Step 10

Determine the critical logarithmic spiral (third successive approximation)
for a homogeneous material for which ¢ = 0.401 p.s.i. and ¢ = 44%48’, by the
trial and error method outlined in Appendix A. The ultimate strength q for
this homogeneous material as calculated from this third critical spiral =
382.8 p.s.i. (Table IV).

Step 11

While three successive approximations are sufficient in this case, in gen-
eral this procedure must be repeated for as many further successive approxi-
mations as may be required for the accuracy needed; that is, until the per
cent difference in ultimate strength values between two successive approxi-
mations is as small as desired.

From Table IV, it will be observed that the ultimate strength given by the
third critical spiral (third successive approximation) is only 0.1 per cent
higher than that found for the second critical spiral. In this case, therefore,
either the second or third critical spiral provides an ultimate strength value
of sufficient accuracy for practical design.

Figure 21 demonstrates that the critical spirals given by each successive
approximation in the above steps lie alternately on either side and successive-
ly closer to the ultimate critical spiral that would result from many succes-
sive approximations.

Step 12

Determine the value for z, representing the deepest penetration of any
logarithmic spiral below the ground surface, by the procedure illustrated in
Step 12, Appendix A. The value of z for the third critical spiral of Table IV
is found to be 27.7 inches.

APPENDIX C

Sample Calculation for the Ultimate Strength of a Three-Layer
System by the Logarithmic Spiral Method

The objective of this sample calculation is the determination of the maxi-
mum applied strip load that a three-layer system, consisting of a bituminous
surface, base course, and subgrade, can support without failure for the con-
ditions illustrated in Figure 22, assuming the failure curve to be a logarith-
mic spiral.

Generally speaking, the method employed requires the determination of ¢
and ¢ values for an equivalent homogeneous material having the same ulti-
mate strength as the layered system. After these c and ¢ values have been
determined, the ultimate strength of the equivalent homogeneous material can
be obtained by the method described in Appendix A. It is assumed, of course,
that this method is capable of providing ¢ and ¢ values for an equivalent
homogeneous material having the same ultimate strength as the layered
system.

There is a different material in each layer of the three-layer system of
Figure 22, and each has its own ¢ and ¢ values. To find the values of c and ¢
for an equivalent homogeneous material having the same ultimate strength as
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Fig, 22, Illustrating the Logarithmic Spiral Method for Calculating the
Ultimate Strength of a Three-Layer Flexible Pavement System,

the three-layer system, the method of successive approximations is employed,
assuming in all cases that the failure curve is a logarithmic spiral.

As the first step in this method, a value for ¢ and a value for @ for the
equivalent homogeneous material are assumed, and the critical logarithmic
spiral is determined as described in Appendix A. Based on the actual values
of c and ¢ for each layer traversed by the spiral, overall average values for
¢ and ¢ assumed to be acting along the full length of the spiral can be calcu-
lated. These calculated values for ¢ and @ will usually be different from
those arbitrarily assumed at the beginning for this spiral. A second critical
spiral is, therefore, determined, based on a homogeneous material having the
average values for ¢ and ¢ calculated for the first spiral. Using the proce-
dure just outlined for the first spiral, overall average values for ¢ and ¢ act-
ing along the full length of the second spiral can be calculated. Using this
second set of average values for ¢ and @, a third critical spiral is deter-
mined, from which a third set of overall average values for c and @ can be
calculated and used for establishing the fourth spiral. This process can he
repeated until the ultimate strength values given by two successive trial
spirals are close enough for practical design.

The number of trials required can be reduced by a modification of the
above procedure. For example, instead of using ¢ and @ values calculated for
the second trial spiral to establish the third trial spiral, the original and cal-
culated values for ¢ and ¢ for the second trial spiral are averaged, and these
average values for c and ¢ are used to establish the third trial spiral.

The successive steps required for the application of the logarithmic spiral
method to the determination of the ultimate strength of a three-layer flexible
pavement system will be outlined in a sample calculation based upon the fol-
lowing conditions illustrated in Figure 22.
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Strip loading
Width of loaded strip

1]

L = 10 inches

For surface course, - c = 10 p.s.i., ¢= 40°
For base course, ¢ = Op.s.i.,, P=45°
For subgrade, ¢ = 5p.s.i., #= 10°

Density of all three layers = w = 140 lbs. per cu. ft.
= 0.081 1lb. per cu. ft.

The following information is required:

(1) Ultimate strength q of the three-layer system in pounds per square inch.
(2) Depth z of the deepest penetration of the critical logarithmic spiral.

The successive steps required for the determination of the ultimate
strength of the three-layer system will be described first.

Some Useful Graphs

Before proceeding with the sample calculation itself, several useful
graphs, that have been developed to reduce the number of calculations re-
quired to determine the ultimate strength of a multi-layered flexible pave-
ment system by means of the logarithmic spiral method, will be described.

The calculation of values for each of the variables listed in Table VI of
Appendix A is a time-consuming task, even when such tables are prepared for
values of the angle of internal friction ¢ at relatively wide intervals of 10°.
Furthermore, values of 6, at 5° intervals as given in Table VI for an angle of
internal friction ¢ = 30°, are not closely spaced enough to pinpoint the values
of 6, at which the minimum cohesion moment and minimum weight moment
occur. For a situation like this, graphs are desirable because of the con-
tinuous spectrum of values for each variable that their use makes possible.

Figures 23, 24, 25, 26, and 27 provide values for each of the important
variables listed in Table VI pertaining to materials with a continuous range
of angles of internal friction ¢ from 0° to 60°.

Figure 23 illustrates the values for the numerical coefficients K, and K¢
associated with the weight moment and cohesion moment, respectively, for a
relatively wide range of values for 6, for a material with an angle of internal
friction ¢ = 30°. Figure 23 consists of a graphical plot of data taken from
Table VI, which applies only when the angle of internal friction ¢ of the ma-
terial is 30°. For example, from the second row of data in Table VI, 8, = 35°,
the weight moment is 12.58 B® w, from which K, = 12.58, while the cohesion
moment is 19.0 B? ¢, so that K. = 19.0. The same values can be read from
Figure 23.

It is obvious from Figure 23 that values for the numerical coefficients Ky
and K. both go through minimums as the value of 6, is varied through the ap-
propriate range. It is also apparent that 6, for the minimum value of Ky
does not coincide with the value of @, at which the minimum value of K. oc-
curs. Minimum K is observed at @, =40° while minimum K occurs at
0, = 48.5°, As the angle of internal friction ¢ increases, the 6, values at
which minimum Ky and minimum K¢ occur become much closer together,
but diverge as ¢ becomes smaller. This is well illustrated in Figure 25.
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Fig. 23. For a Given Value of Angle of Internal Friction ?, Illustrating
Graphical Determination of the Values of 01 at which Minimum Values of Ky
and K, Occur,

Graphs similar to that of Figure 23 have been prepared for angle of internal
friction ¢ of 2, 4, 10, 20, 30, 40, 50, and 60°,

It is one of the principal purposes of graphs like Figure 23 to provide the
minimum values of K. and K, since these particular values of K and K
are required for the determination of the reaction moment associated with the
maximum load that can be applied. Figure 24 is a graph of the minimum
values of K. and K,, for materials with angles of internal friction @ varying
from 0° to 60°. Figure 24 indicates that the minimum values of K, become
quite small for materials with angles of internal friction ¢ less than about
15°. This means that for materials with angles of internal friction from 0° to
about 15°, the weight moment is quite small relative to the cohesion moment;
that is, the total reaction moment consists largely of the cohesion moment.
When:¢ = (°, the reaction moment, of course, is equal to the cohesion mo-
ment, and the weight moment is zero.

Figure 25 illustrates the relationship between angle of internal friction @,
and the values of 6, at which minimum values of Ky and K. occur. However,
the overall reaction moment required is associated with a single value of 6,.
This particular value of €, must lie between the values of 6, for minimum
K, and minimum K.. For example, if ¢ = 30°, the value of 6, pertaining to
the minimum overall reaction moment will be between 6, = 40° (minimum K.)
and @, = 48.5° (minimum K,). The required single value of §, between these
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limits can be established on the basis of the relative magnitudes of the cohe-

ainn mmnarmant and fh i i ini H
sion moment and the weight moment. For example, if the minimum cchesion

moment is one-half the minimum weight moment for a material having an
angle of internal friction ¢ = 30°, the value of 6, needed for determining the
required overall reaction moment is 40° + (2/3) (48.5 - 40) = 45.7°. It should
be added that 6, can vary appreciably from the single value established by
this method without having any marked effect on the value of the overall re-
action moment.

Figure 26 provides values of §, for corresponding minimum values of K¢
and K for materials with angles of internal friction ¢ up to 60°. For any
given problem, the required single value of §, can again be determined on
the basis of the relative magnitudes of the cohesion and weight moments.

In Figure 27, the values of EBD associated with the minimum values of K¢
and K, for materials with angles of internal friction ¢ from 0° to 60° are
given. In this case also, the single value of EBQ required for the solution of the

problem is intermediate between those given by the two curves, and depends
upon the ratio of the cohesion and weight moments.

When the procedure of Appendix B is followed, one of the most time-con-
suming phases of the solution is the calculation of the lengths of the portions
of the logarithmic spiral lying within each layer of the flexible pavement.
Before the lengths of the arcs of the spiral within each layer can be calcu-
lated, the size of the angles 6,, o, 6,, and 8 in Figure 20, or 6,, a,, &,, 6,,
B2, and B, in Figure 22 must be accurately determined to within a small
fraction of a degree, since they serve as the limits of integration in the equa-
tion for the length of an arc of a spiral (Equation (9), Step 4, Appendix B).
Determining the sizes of these angles accurately is a lengthy procedure be-
cause of the trial and error method involved at one stage, Step 4, Appendix B.

By using polar coordinate graph paper of rather large size (e.g. 17 x 11
inches), Figure 28, the size of the different angles 6,, a,, a,, 4,, 8,, and 5,
can be read directly from the graph to the nearest one-tenth of a degree,
which provides sufficient accuracy for the solution of practical problems. In
this case, the origin of the polar coordinate paper must also be the origin of
the logarithmic spiral. The spiral itself can be easily drawn, Figure 28.

The information provided by the graphs of Figures 24, 25, 26, 27, and 28
will now be utilized to facilitate the solution of the three-layer flexible pave-
ment problem described earlier in Appendix C, and illustrated by Figure 22.

Step 1

Arbitrarily assume ¢ and ¢ values for the homogeneous material that is
to have the same ultimate strength as that of the given three-layer system.
The arbitrarily assumed values for ¢ and @ for the first step are

¢ = 5p.s.i. and @ = 3(0°
Step 2
From Figure 24 read off minimum values of Ky and K. for ¢= 30°.

11.35
18.85

Kw
K¢

"
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Fig, 28, Illustrating Graphical Procedure Based on Polar Coordinates
for Simplifying Calculation of Ultimate Strength of a Three Layer Flexible
Pavement System by the Logarithmic Spiral Method.

Substitute these values in the reaction moment equation

My = B3K,w + B2 K ¢ (16)
giving
Mg = 11.35 B*w + 18.85 B’ ¢
but
w = 0.081 lbs./cu. in.
and
¢ = 5p.s.i.
Therefore,
Mgy = 0.919 B® + 94.25 B? (17)
Step 3

From inspection of Figure 22, and since L = 10, it is apparent that the
load moment is given by

M, =10p (B - 5) (18)

Step 4
Equating the load moment to the reaction moment gives

10p (B - 5) = 0.919 B® + 94.25 B?

which, upon rearranging, becomes
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_ 0.919 B® + 94.25 B® (19)
h 10 (B - 5)
Step 5

It is necessary to find the value of B, for which p will be a minimum,
since this minimum value of p will be the ultimate strength q. The value of
B that will give a minimum value of p is found by differentiating equation (19)
with respect to B, equating the derivative tn zero, and solving the resulting
quadratic equation for B.

Differentiating equation (19), simplifying, and equating the resulting equa-
tion to zero gives

9 _ g2, 43.78B - 512.79 = 0 (20)

Solving equation (20) for B gives
B = 9.61

Step 6
The ultimate strength q is the value of p obtained by substituting the value
9.61 for B in equation (19), and solving for p, giving
p = 206.5 p.s.i.

Step 7

To establish the origin of the critical logarithmic spiral for which the
ultimate load q is 2 minimum, it is necessary to determine the value of 6, in
addition to B. From Figure 25, it is apparent that minimum values of K, and
K. do not occur at the same value of 6,. Since only one value of 6, can be
used to determine the origin of the critical spiral, a weighted average of the
two values of 6, must be taken. This weighted average value for 6, is es-
tablished on the basis of the relative magnitudes of the cohesion moment M.
and the weight moment M,,.

M, = 0.919 B® {from equation (17))

(0.919) (886.3)

814.5

94.25 B? (from equation (17))
(94.25) (92.3)

8696.1

£
[l] 1} L} [} 1]

Consequently, the cohesion moment M, is more than ten times as large as the
weight moment My,. It will be remembered that the total reaction moment
MR = Mw + MC'
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Step 8
From Figure 25,

48.42°
39.8°

i

for K,, (minimum), 6,

for K. (minimum), 6,
Consequently,

for M, (minimum), 6, = 48.42° and
for M. (minimum), 9, = 39.8°
The weighted average value of 6, to be employed for locating the origin
of the critical spiral will be closer to 39.8° than to 48.42° because the cohe-

sion moment M, is more than ten times as large as the weight moment M,,.
The required value of 6, is

M

C
48.42 - m (49.42 - 39.8)
8696.1
= 4842 - geoe T4 81a5 (8:62)
= 4842 - 7.88

40.54° = 40°32’

Therefore, the value of 6, required to establish the origin of the critical
spiral is 6, = 40°32’.
Step 9

It is not necessary to calculate the value of 6,, but preknowledge of its
value provides a useful check on the accuracy employed when drawing in the
spiral on polar coordinate graph paper, Figure 28.

From Figure 26,

for My, (minimum), 6, = 166.8°
for M; (minimum), §, = 170.0°

Only one value of 8, can be used to determine the origin of the critical
spiral, and it must lie between the two values 166.8° and 170.0°. Its value is

established on the basis of the relative magnitudes of the cohesion moment
M, and the weight moment My, following the procedure of Step 7. This gives

9, = 169°43°

Step 10
From Figure 27

for My, {(minimum), % = 0.926
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for M¢ (minimum), r—BQ = 0.873
Again, only one value of % can be employed for establishing the origin of

the critical spiral. Following the procedure of Step 7, a weighted average

value is found for To which is

B)

Lo -

B 0.878
However,

B = 9.61 (Step 5)
Therefore,

r, = (0.878) (9.61)

= 8.42 inches.

Step 11

On the basis of the values for B, 6,, and r,, obtained in Steps 5, 8, and 10,
the critical logarithmic spiral can be drawn, Figure 28. Read values of the
angles o, a,, B,, 8., from the graph (Figure 28) to the nearest one-tenth
degree. As a check, the value of 6, provided by the spiral should be read as
close as possible from the graph, and compared with the calculated value of
6, from Step 9.

From Figure 28

o, = 48%8
a, = 83°00’
B, = 166%5
8, = 14930
6, = 169%42’

N

Step 12

The total length of the spiral (below the pavement surface), and the
lengths of the portions of the spiral lying within each layer of the three-layer
system, Figures 22 and 28, can now be calculated.

The length of the arc DMG of the spiral is found by integrating the follow-
ing equation,

o
Length of arc DMG = oV BEE + 116 tand) (9)

It has already been determined that

r, = 8.43
6, = 40°32’
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9, = 169°43’
tan ¢ = tan 30° = 0.57735
Substituting these values in equation (9), and simplifying,
Length of arc DMG = 67.953 inches

Similarly,

_rytan’g + 1 t o
Length of arc DE = @ng [e 6 a“‘15]91 (21)

By inspection, from Figure 28
a, = 48%48°,

and the other variables were previously evaluated.
Substituting these values in equation (21), and simplifying,

Length of arc DE = 2,204 inches.

In a similar manner, since values for a,, B, B, and 6, can be read from
the drawing (Figure 28), by suitable substitution in equations similar to equa-
tion (21), it is found that

Length of arc EX = 11.343 inches
Length of arc XY = 37.143 inches
Length of arc YF = 14.439 inches
Length of arc FG 2.824 inches

]

Therefore,

Total length of spiral
in bituminous surface

Total length of spiral
in base course

Total length of spiral
in subgrade

= 2.204 + 2.824 5.028 inches

= 11.343 + 14.439 = 25.782 inches
= 37.143 inches

Step 13

A method for obtaining an overall average value for the angle of internal
friction ¢ along the whole spiral DMG has been illustrated in Step 5, Appendix
B. Consequently,

(67.953) ¢, = (5.028)(P= 40°) + (25.782)(P= 45°) + (37.143)(@= 10°)

from which
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é.. = (5.028)(40) + (25.782)(45) + (37.143)(10)
av = 67.953

25°30°

Therefore, the overall average value for ¢ along the length of the first
spiral is 25 deg. 30 min.

Step 14

A method for obtaining an overall average value for cohesion ¢ along the
whole spiral DMG has been illustrated in Step 6, Appendix B. Consequently,

(67.953) cay = (5.028)(c = 10) + (25.782)(c = 0) + (37.143)(c = 5)
from which

_ (5.028)(10) + (25.782)(0) + (37.143)(5)
av = 67.953

3.47 p.s.i.

Therefore, the overall average value for cohesion ¢ along the length of the
first spiral is 3.47 p.s.i.

Step 15

The values of ¢ and ¢ arbitrarily assumed for the construction of the
first spiral were

c = 5p.s.i.
¢ = 30°

The overall average values of ¢ and ¢calculated for this first spiral were

c = 3.47 p.s.i.
@ = 25°30’

The ¢ and ¢ values calculated for the spiral are, therefore, appreciably
different than those arbitrarily agsumed for its construction. Consequently,
the method of successive approximations must be continued until the overall
average values for c and ¢ calculated for the spiral are very nearly the same
as those used for its construction.

Step 16

Using the procedure of Steps 1 to 15, determine the critical logarithmic
spiral (second successive approximation) for a homogeneous material for
which ¢ = 3.47 p.s.i. and @ = 25°30’, the values of ¢ and ¢ calculated for the
first trial spiral.

This second critical spiral gives an ultimate strength value of 99.3 p.s.i.,
an overall average value of ¢ = 2.96 p.s.i., and an overall average value of
@ = 29%45°,
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These calculated overall average values for c and ¢ for the second spiral,
c=2.96and ¢= 29945’ are still appreciably different than those employed
for its construction, ¢ = 3.47 p.s.i. and @ = 25°30°. Consequently, a third trial
is necessary.

Step 17

To lessen the gap between original and resultant values of c and for the
spiral, take as the original values for ¢ and @ for the third successive ap-
proximation the average of the original and resultant values for c and ¢ for
the second trial spiral. Consequently, the values of ¢ and @ to be used for the
third trial spiral are

¢ = 3_-41_;_&% - 3.22 p.s.i.
O ’ 0, ’

@ 25°30 ;- 2945’ _ 27938’

By using this method of averaging original and resultant values for ¢ and
@ for the previous spiral (except the first), the number of trials (successive
approximations) can be materially reduced.

The third trial spiral drawn on the basis of these averaged values for ¢
and ¢ gives an ultimate strength of 110.91 p.s.i., an overall average value of
¢ = 3.18 p.s.i., and an overall average value of ¢ = 27°50°.

Step 18

For the fourth successive approximation, take as the original values for c
and ¢ the average of the original and resultant values for the third trial
spiral. The c and ¢ values to be used, therefore, are

3.22 + 3.18
2

® 27°38’ + 27°5Q°
2

= 3.20 p.s.i.

i

= 27%4’

The fourth trial spiral based on these averaged values for ¢ and ¢ gives
an ultimate strength of 110.8 p.s.i., an overall average value of ¢ = 3.22 p.s.i.,
and an overall average value of ¢= 27°37’,

It is clear that the values for ¢, 9, and ultimate strength q, resulting
from the fourth trial spiral, are almost identical with those provided by the
third trial. It would, therefore, be of no practical value to make a fifth suc-
cessive approximation.

Consequently, the required value for the ultimate strength q of this three-
layer flexible pavement system is

q = 110.8 p.s.i.

Figure 29 demonstrates that the critical spirals given by each successive
approximation in the above steps lie alternately on either side, and succes-
sively closer to the ultimate critical spiral that would result from many
successive approximations.
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Fig. 29, Illustrating Relative Positions of Logarithmic Spirals Resulting
from Successive Trials When Applying the Method of Successive Approxima-
tions.

Table VII. Ultimate Strength of Three-Layer System

For Surface Course ¢ = 10 p.s.i., ¢ =40°
For Base Course c¢= 0p.s.i., ¢=45°

For Subgrade ¢c= 5p.s.i., ¢=10°
Thickness of Surface Course = 2 inches
Thickness of Base Course =9 inches

Density of Surface, Base, and Subgrade = 140 lbs./cu.ft.
= 0.081 1bs./cu. in.
Strip Loading
Width of Loaded Strip = 10 inches
Values of ¢, @, and q for Successive Trials

Successive Cohesion Angle of Ultimate Strength
Approximation c Internal Friction q
No. p.s.i. ¢ p.s.i.
1 5.0 30° 206.5
2 3.47 25°30" 99.3
3 3.22 27°38' 110.9
4 3.2 27%4" 110.8
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Step 19

Determine the value for z, representing the deepest penetration of any
given logarithmic spiral below the ground surface, by the procedure illus-
trated in Step 12, Appendix A. For the fourth trial spiral, from Step 18 above,
it is found that

z = 14.7 inches

Step 20

Prepare a table of the values for c, ¢, and ultimate strength q associated
with each trial, or successive approximation, Table VII.

It is quite apparent from Table VII that there is little difference between
the ultimate strength values for the third (110.9 p.s.i.) and fourth (110.8 p.s.i.)
trials. The c and ¢ values for the third and fourth trials are also nearly the
same. Consequently, only three trial logarithmic spirals were required to
determine the ultimate strength of this three-layer flexible pavement with
sufficient accuracy for ordinary practical design.

APPENDIX D

Location of the Origin of the Critical Logarithmic Spiral

The principles involved in the determination of the ultimate strength of a
homogeneous soil by means of a logarithmic spiral failure curve have been
illustrated by the sample calculation of Appendix A. The critical logarithmic
spiral is the curve along which failure is assumed to occur if the ultimate
strength of the material is exceeded. The origin of this critical spiral must
be found by trial and error, and it lies on a radius vector through an extrem-
ity of the loaded area and making an angle 6, with the horizontal, Figure 19.

Appendix D presents a simple mathematical proof that the exact position
of the origin of the critical logarithmic spiral along this radius vector is
located by,

1. the intersection of the radius vector with the ordinate marking 75 per cent
of the distance toward the opposite extremity of the loaded area for cohe-
sionless soils, (c = 0), and

2. the intersection of the radius vector with the ordinate through the opposite
extremity of the loaded area (100 per cent of the distance toward the op-
posite extremity) for cohesive frictionless soils, (¢ = 0).

Figure 19 will be employed to illustrate these two mathematical proofs.
The conditions illustrated by Figure 19 are:

1. Strip loading.

2. Width of loaded strip = L.

3. Horizontal distance from one extremity of the loaded area to the ordinate
through the origin of the critical logarithmic spiral = B.

The problem consists of finding the distance B as a fraction or percentage
of the total width L of the contact area for:

(a) cohesionless soils (c = 0),
(b) cohesive, frictionless soils (@ = 0), and
(c) soils with both cohesion and friction {c and ¢).
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Case 1. Cohesionless Soils (¢ = 0)

When using the logarithmic spiral method for determining the ultimate
strength of a soil, the load moment Mj, must be equated to the reaction mo-
ment Mg, which in turn consists of the sum of the weight moment M and
the cohesion moment M.. Consequently, for the critical logarithmic spiral,
at equilibrium,

Mp, = MR = My + M¢
From Figure 19, by inspection,

My = pL (B - 5)

and from Appendix A,
Mp =M, + M. = B3k, w+ BPK. ¢

It was explained in Appendix C that K, and K. are numerical coefficients in
the general expressions for the weight moment M, and the cohesion moment
M, respectively. See also Table 6 of Appendix A.

Consequently,

pL(B -%): B*°K,, w+ BPK.c

from which

B’K, w + B2K_ ¢
p = 1z < (22)

BL-_Q_

For cohesionless soils ¢ = 0. Therefore, for cohesionless soils equation
(22) becomes

_BKyw

L2
BL -

p (23)

It is required to find the value of B that will result in the minimum value
for p, since the minimum value for p is the required ultimate strength q. At
the same time, this value for B also locates the ordinate on which the origin
of the critical logarithmic spiral failure curve must lie.

The value of B that will give a minimum value for p for cohesionless soils
is obtained by differentiating equation (23) with respect to B, equating the de-
rivative to zero, and solving the resulting equation for B. This operation
gives the-following:

Lz 2 3
o (BL - —2-)(33 Kww) - B Ky w L
dB "~ ( L’)2

BL - &
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from which, upon simplification,

3(3-%)-5:0

or

B=3L_ o151
4
Therefore, the origin of the critical logarithmic spiral for cohesionless
soils lies on the ordinate that marks off 75 per cent of the width of the con-
tact area when measured from the extremity of the loaded area intersected
by the spiral itself.

Case 2. Cohesive, Frictionless Soils (¢ = 0)

The development of the mathematical proof for the location of B for Case
2, cohesive frictionless soils, is identical with that for Case 1 down to equa-
tion (22),

_B'K,w+ BPK ¢

p (22)

BL-—2—-

For cohesive, frictionless soils, ¢ = 0, and the value of the weight mo-
ment expression, B® Ky w of equation (22) is zero, since Kw = 0 when ¢ = 0,
Figure 24. Therefore, for cohesive, frictionless soils equation (22) becomes

- B?K¢ ¢

p — 1z (24)
BL - 5

As for Case 1, the value of B that results in a minimum value for p is ob-
tained by differentiating equation (24) with respect to B, equating the deriva-
tive to zero, and solving the resulting equation for B. This operation gives
the following,

2
(BL - L'—)2BK¢c ~- BKccL
dp _ 2 -0
S — =
dB (BL _ 14_)
2
from which, upon simplification,
L) _
2(B-%)-B-0
or
B=L

For cohesive, frictionless soils, therefore, the origin of the critical
spiral lies on the ordinate through the opposite extremity of the contact area
to that intersected by the spiral itself.
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Case 3. Soils with Both Cohesion and Friction (c and @)

While there is no simple mathematical proof covering the location of B in
this case, it can be inferred from Cases 1 and 2 that for soils with both cohe-
sion and friction, the origin of the critical spiral lies on the radius vector at
its intersection with an ordinate somewhere between 75 and 100 per cent of
the distance toward the opposite extremity of the contact area from that in-
tersected by the spiral itself. For this case, therefore, B is greater than
0.75 L., but less than L, or as expressed in mathematical symbols,

0.75L< B < L (25)

The exact location of B between these two limits depends upon the rela-
tive magnitudes of cohesion c and angle of internal friction ¢ of the soil ma-
terial. When ¢ is large and ¢ is small, B approaches 0.75 L, while for the
reverse, B approaches L.

That the position of B for the critical logarithmic spiral for soils with
both ¢ and ¢ values lies between 0.75 L and L is illustrated by the sample
calculations of Appendices A, B, and C. For each of these sample calcula-
tions, L = 10 inches, and B should, therefore, have values between the limits
of 7.5 and 10 inches.

From Step 10 in Appendix A for which ¢ = 5 and @ = 30°, B = 9.6 inches.
From Step 4 in Appendix B for which ¢ = 0 and ¢ = 45% B = 7.5 inches.
From Step 5 in Appendix C for which ¢ = 5 and ¢ = 30°, B = 9.6 inches

It happens that the distribution of ¢ and ¢ values for these three sample
calculations from Appendices A, B, and C cover a relatively narrow range.
Nevertheless, the corresponding values of B for the critical spirals indicdte
the correctness of equation (25).

Discussion

MR. EDMUND THELEN: I’d like to ask how cohesion ¢ was
measured.

DR. N. W. McLEOD (Demonstrating on blackboard): The
term cohesion ¢, as employed in this paper, has the same sig-
nificance as in the field of soil mechanics. It can be most easily
understood by reference to a Mohr or Coulomb diagram, Figure
A(2), in which the shear strength s developed along the plane of
failure through the material, Figure A(1), is the ordinate axis,
while the stress acting normal or perpendicular to the plane of
failure is plotted as the abscissa. On a Mohr or Coulomb dia-
gram, cohesion ¢ is represented by the intercept on the ordinate
axis (shear stress axis) that is made by the Coulomb or Mohr
envelope, Figure A(2). Expressed in another way, and illustrated
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Fig. A. Mohr or Coulomb Diagram.

by Figure A(2), cohesion ¢ represents the maximum shear
strength that can be developed along the failure plane through a
material, Figure A(1), when the normal stress n acting on the
plane of failure is zero. For the soil and aggregate materials
considered in soil mechanics, and for most bituminous paving
mixtures, the Coulomb or Mohr envelope is usually a straight
line which is a graphical representation of the well-known Cou-
lomb equation s = ¢ + n tan ¢, Figure A(2), where s is the maxi-
mum shear strength that can be developed along the failure plane,
Figure A(1), ¢ is the cohesion c¢ already defined, n is the normal
stress on the plane of failure, Figure A(1), also referred to pre-
viously, and ¢ is the angle of internal friction indicated by the
angle between the Coulomb or Mohr envelope and the horizontal.
From even casual inspection of the Coulomb equation, it is seen
that the shearing strength s of a soil, aggregate, or bituminous
surfacing material can be increased by increasing the values of
either c, ¢, or n. The triaxial test can be used to measure the
values of ¢ and ¢ for each of these materials. As indicated in
the paper, when all other factors remain constant, the ultimate
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strength of a flexible pavement can be greatly increased by in-
creasing the value of ¢ or ¢, or both, for the material in any one
or more layers of the flexible pavement system.

MR. JOHN GRIFFITH (Supplemented by written discussion):
Dr. McLeod has stated that only one assumption was made in his
proposed solution—namely, that the failure curve is of the shape
of a logarithmic spiral. I would like to submit, however, that a
number of other assumptions are necessary in problems of this
nature. One is that strength characteristics reflected by a single
load application, as in the triaxial and other empirical tests, are
assumed to be the same as strength characteristics measured by
repetitive load applications. We know that in flexible pavements
any failures which occur do s0 under a large number of repeti-
tive loads. The assumption, then, is that the single load applica-
tion in the triaxial test provides a direct measure of strength
which is applicable to repetitive loading conditions. This is
definitely an assumption and I, for one, do not believe that it can
be substantiated.

Further assumptions must be made with regard to density
and moisture content conditions under which the tests are run.
We know that moisture contents vary in the pavement structure
and also that there are some changes in density under traffic.
These variables result in still other assumptions in the triaxial
test procedure as discussed by Dr. McLeod.

Still another assumption is to the effect that laboratory com-
paction procedures give the same density and structure, or par-
ticle orientation, as achieved in the field. From the number of
laboratory compaction procedures now being used and the several
papers which have been presented on this subject, one would
gather that it is at least debatable that any compaction procedure
can be definitely relied upon to give unquestionable results inso-
far as density and particle structure are concerned. In fine-
grained soils particularly, it is extremely doubtful that we can
ever reproduce the structure provided by mother nature. We
will probably find it difficult to reproduce density and particle
structure conditions which are achieved by construction equip-
ment.

There are other variables in this problem such as those
resulting from frost and climatic factors, possible physical
changes in the various construction materials over a period of
time, the effects of unpredictable traffic patterns and loading
conditions, etc., that we have no way of evaluating in precise
terms. These factors certainly are not evaluated in a precise
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manner in Dr. McLeod’s triaxial solution, nor are they in other
approaches to this problem. Either they are not considered at
all or certain simplifying assumptions are made in an effort to
take them into account in the solution of the problem.

I submit, therefore, that there are a number of assumptions
and omissions in Dr. McLeod’s proposed “rational” solution,
rather than the single admitted assumption that the failure curve
is in the shape of a logarithmic spiral.

In conclusion, I wish to again register a protest on the im-
plication that this is a rational, theoretical and precise solution.
In my opinion, it is fully as empirical as other more commonly
used procedures and methods of analysis which are usually ad-
mitted to be “empirical.” If and when a truly “rational” proce-
dure for pavement design is ever reached, it will likely be of
such a complex nature that only our most outstanding mathema-
ticians will be able to handle it. I have no doubt, however, but
that Dr. McLeod will be in the forefront of this development.
Notwithstanding any comments and objections, I feel that Dr.
McLeod is to be highly complimented on the originality of his
thinking and for making the results of his studies available to
all of us.

DR. McLEOD (Supplemented by written discussion): Mr.
Griffith’s frank disagreement with the attempt made in this
paper to outline a rational approach to flexible pavement design
is warmly welcomed and greatly appreciated. Lack of agree-
ment has the stimulating effect of forcing one to re-examine and
further justify or clarify his own point of view.

The comments that have just been expressed by Mr. Griffith
probably reflect the thinking of a large school of highway and
airport engineers who not only favour the empirical approach to
flexible pavement design, but have actually convinced themselves
that the difficulties in the way of the development of a rational
method of flexible pavement design are insuperable, or nearly
so. These beliefs of those who belong to this school of thought
are sincerely held, and merit careful consideration by all engi-
neers who are interested in this field.

It is clearly recognized that almost our entire storehouse of
published information concerning the strength or stability of
flexible pavements consists of the results of purely empirical
tests such as C.B.R., North Dakota Cone, Hveem Stabilometer,
Florida Bearing Value, Texas Punching Shear, Unconfined Com-
pression, Marshall, Hubbard-Field, etc. Practicing engineers
are, therefore, tied to these empirical tests as a basis for the
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design of flexible pavements, if t-<y intend to utilize our ac-
cumulated experience in this field. Any engineer who attempts to
use a rational approach to flexible pavement design is to a very
considerable extent travelling over unexplored territory, and is
more or less on his own. However, an expevienced engineer,
when using a rational method of flexible pavement design, is on
firmer ground than a first impression may convey, since there
are many points at which the conclusions indicated by the ra-
tional approach can be checked at least qualitatively with the
known performance of flexible pavements in service. Some of
these have been referred to in the present and previous papers
by the author.

It is precisely because the current methods ordinarily em-
ployed for the design of flexible pavements are entirely empiri-
cal throughout, that it is worth while for highway and airport
engineers to pause occasionally and reflect on the fact that in
this respect the status of flexible pavement design today is where
general structural design was over a century ago before theoreti-
cal stress analysis came into general use. No doubt there were
many engineers at that time who adopted and maintained the atti-
tude that the empirical approach to the design of bridges, build-
ings, and other structures, an approach that had been gradually
developed and tested over a period of seventy centuries or more,
was entirely adequate and that the untried theories of stress
analysis being proposed could be dismissed as a product of the
over-active imaginations of a few mathematicians, and were
much too complicated in any case to ever come into general use.

While some of the structures, aqueducts, bridges, buildings,
etc. built by the Romans from fifteen hundred to two thousand
years ago, are still in service, our present knowledge of stress
analysis indicates that they were usually greatly overdesigned
and, therefore, very wasteful of construction materials. Of
course, those that were underdesigned because of the empirical
methods of design employed, collapsed during construction or
shortly afterward. Serious overdesign and underdesign is the
penalty that the empirical approach can always be expected to
inflict in the fields where it is utilized, since the safety factor
being used cannot be determined.

The invention and rapid development of railroad transporta-
tion throughout the world in the latter half of the nineteenth cen-
tury is considered to have greatly accelerated the acceptance of
rational methods of structural design based upon the theoretical
stress analysis. The tremendous number of bridges alone that
were required for railroad extension across vast undeveloped
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areas made it imperative that their cost be kept to a minimum
compatible with safety. Rational design made this possible. It
is doubtful that the growth of the continent-wide network of rail-
roads, and the accompanying large scale development of industry
and agriculture in North America during the past century, could
have proceeded at anything approaching the spectacular rate
actually achieved, if the wasteful empirical methods of structural
design employed previous to that time had been followed. To a
not inconsiderable degree, therefore, the phenomenal develop-
ment of the North American continent during the past hundred
years has been due to the enormous reduction in construction
and manufacturing costs that rational methods of design based
upon theoretical stress analysis have made possible. As pointed
out in the paper, there is a possibility that the introduction of
high tire inflation pressures on jet aircraft, and the gradually
increasing axle loads on highways, may stimulate and accelerate
the development of a rational approach to flexible pavement de-
sign.

It is a rather curious anomaly of mental attitudes that engi-
neers, who would insist on applying the vational methods of soil
mechanics to the design of bridge or building footings, embank-
ments, earth dams, etc. in any given area, are satisfied to ac-
cept without question one or more of the current empirical
methods if asked to design a flexible pavement in the same lo-
cality, even though the latter appears to be a specialized prob-
lem in soil mechanics. The necessity for utilizing these empiri-
cal methods of flexible pavement design for current projects is
not disputed, since it is realized that an engineer on the job has
little alternative at the present time. Faced with the need for
immediate decisions, he must make use of whatever tools and
information past research has made available, and these have
been essentially empirical.

It is the casual, continued, unquestioning acceptance of these
empirical methods of flexible pavement design that is surpris-
ing, particularly in an age when the advantages of the rational
approach to the solution of scientific problems have been so
strikingly demonstrated by the brilliant achievement of unlock-
ing the energy of the atom. This comment applies particularly
to those who are responsible for research in the flexible pave-
ment field. It is disconcerting to find that so little research ef-
fort is being expended on attempts to develop rational methods
for designing flexible pavements, especially when, as should be
well known, one empirical method may reject as poor design
what another empirical method would approve as good design;
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for example, Marshall versus Hveem Stabilometer. There is
even a tendency for some of the research going on in this field
to be directed to the development of additional empirical tests,
which only add to the existing confusion, instead of endeavouring
to come to grips with the problem on a fundamental basis.

In the related field of rigid pavements, since portland cement
concrete is considered to have the properties of an elastic ma-
terial, principles of theoretical stress analysis can be utilized
similar to those that have been so successfully applied to the de-
sign of steel structures for many decades. Nevertheless, it was
not until papers by Westergaard were published in 1926 and 1933,
that the design of rigid pavements was placed on a rational basis
which has been almost universally accepted.

Now, nearly thirty years later, it would seem to be about
time that some serious effort was being devoted to the develop-
ment of a rational method of flexible pavement design that would
receive general approval on a national and international scale.
Nevertheless, the existing stock of fundamental information on
this subject is still so meagre, and so little is yet known about
the actual mechanism of failure of flexible pavements when over-
loaded, that it has not been possible so far to take even the first
important step toward a rational method of design, which re-
quires deciding whether the design of flexible pavements should
be based upon elastic behaviour, plastic properties, or a com-
bination of both. Consequently, much basic work remains to be
done in this field.

While it is recognized that the task of developing one or
more generally acceptable rational methods for the design of
flexible pavements is far from easy, a number of investigators
have made a start in this direction, and the contributions of
Gray, Housel, Goldbeck, Palmer, Barber, Vokac, and Glossop
and Golder, among others, are well known. Publication in 1943
of the results of Professor Burmister’s outstanding study of
the flexible pavement design problem based upon the elastic
properties of a layered system requires special mention, while
a further attempt has been made from the entirely different
point of view of plastic behaviour in the author’s paper that has
just been presented.

In his discussion, Mr. Griffith has made a number of specific
criticisms, to which the author would like to reply.

He suggests that the triaxial test is not suitable for determin-
ing the strength characteristics of the materials employed for the
various layers of a flexible pavement, since he believes that only
one application of load can be made, whereas a flexible pavement
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may be subjected to many hundreds of thousands of load repeti-
tions during its service life. This criticism is not valid, how-
ever, since triaxial procedure has been devised for applying any
number of load applications from one to a great many. Conse-
quently, if it is actually required, repetitive loading can be em-
ployed for the triaxial test. On the other hand, so little is still
known about the way or ways in which overloaded flexible pave-
ments fail, that the author is not at this time prepared to admit
that it is necessary to introduce repetitive loading into the tri-
axial test for routine design.

In the somewhat related field of plate bearing tests, analysis
of data from many hundreds of large scale load tests on steel
plates having diameters from 12 to 42 inches, carried out by the
Canadian Department of Transport on existing runways at Cana-
dian airports, has indicated simple relationships between loads
supported at one, ten, one hundred, one thousand, etc. repetitions,
for a given total deflection and rate of loading. Consequently, if
for any given load Mr. Griffith cares to name the number of
repetitions that he considers critical, it is just possible that this
load will be found to be a rather definite fraction of the load that
can be applied for one application in the triaxial test.

Carefully performed triaxial tests have demonstrated that
clays develop much greater strength under transient than under
sustained loads. This tends to be true of materials in general.
As explained in the paper itself, rapidly moving loads (transient)
develop considerably higher values of cohesion ¢ within a flex-
ible pavement than stationary loads. Therefore, the ultimate
strength mobilized by a given flexible pavement tends to be con-
siderably higher under moving than under stationary wheel loads.
For most flexible pavements, this additional ultimate strength
may be more than adequate to compensate for the destructive in-
fluence, e.g. possibly fatigue, of a large number of repetitions of
load represented by moving traffic. Consequently, it is by no
means certain that a repetitive procedure for the triaxial test,
as suggested by Mr, Griffith, is always necessary or desirable
when this test is used for flexible pavement design.

It might be noted in this regard that for reasons contained in
the paper itself, the severity of traffic loading to which flexible
pavements are subjected in service would appear to rank in
decreasing order as follows:

(1) vehicles applying braking and acceleration stresses at loca-
tions where there is much stopping and starting of traffic,
e.g. bus stops and traffic lights,
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(2) stationary vehicles, and
(3) vehicles moving at a high but relatively uniform rate of speed.

Mr. Griffith refers to the difficulty of preparing laboratory
test specimens that will reproduce the density, moisture, and
structure that various flexible pavement materials will eventually
acquire in the field, and for this reason he questions the value of
triaxial tests applied to flexible pavement design. However, this
problem is no more serious with respect to the triaxial test than
to any of the empirical tests that are currently employed, usually
without question, for the design of flexible pavements. It should
be noted that these same factors must be considered in connec-
tion with the preparation and testing of test specimens required
for the design of many other earth structures such as embank-
ments, earth dams, retaining walls, building foundations on
either natural or filled ground, etc. Nevertheless, these diffi-
culties have not been considered serious enough to prevent the
use of rational methods of design in these related fields. Con-
sequently, uncertainties concerning the moisture content, density,
and method of compaction to be selected for the preparation of
test specimens do not provide any more valid reason for object-
ing to the application of the results of the triaxial test to the de-
sign of flexible pavements than to the use of this test as the basis
for the design of the various types of earthwork construction for
which it has been long employed.

The other objections listed by Mr. Griffith are in the same
category. For example, earth dams are exposed to the various
factors of frost, climate, changing moisture content, drawdown,
etc., which are either identical with or more serious than those
to which flexible pavements are subjected. However, they do not
prevent earth dam engineers from using rational methods of de-
sign, even though the failure of an earth dam would ordinarily be
a much more serious matter from the point of view of 1oss of
life and property damage, than the failure of a flexible pavement
on an airport runway or highway. Probably it is just because
the failure of an earth dam would often be catastrophic that
earth dam engineers feel that they must make use of a rational
method of design in spite of some uncertainty concerning the
magnitudes of a number of the variables that must be included.
Furthermore, to avoid excessive costs, they are ordinarily re-
stricted to a safety factor that is higher than unity but less than
two.

The effects of “unpredictable traffic patterns and loading
conditions, etc. that we have no way of evaluating in precise
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forcibly to the bridges, multi-level traffic interchanges, etc.,
that must be built on any highway system, as to the long miles of

flexible navpmpnf between them. Uncertainties concerning the
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magmtudes of these variables do not prevent the design of
bridges and similar structures by rational methods. Bridge
engineers make the best possible estimate of the “traffic pat-
terns and loading conditions” to be expected, and design these
structures accordingly. The same approach would be employed
when applying a rational method to the design of flexible pave-
ments. .

In the final paragraph of his discussion, Mr. Griffith states,
“I wish to again register a protest on the implication that this is
a rational, theoretical, and precise solution. In my opinion, it is
fully as empirical as other more commonly used procedures
and methods of analysis which are usually admitted to be ‘em-
pirical’.”

As previously pointed out, all of the factors that Mr. Griffith
has listed as being insurmountable to the development of a ra-

tional method of flexible navement degion have not stonned the
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evolution and wide-spread use of rational methods of design in
related fields where each of these factors, and some that are
even more formidable, must be considered. For example, the
identical factors enumerated by Mr. Griffith did not prevent the
derivation of a rational method of design for rigid pavements
that within a very few years became universal in its application,
Earth dam design is another excellent example.

The general nature of his remarks tende to give the impres-
sion that Mr. Griffith would be unwilling to acknowledge that any
proposed method of flexible pavement design could be labelled
“rational,” unless it took into account each of the factors he has
listed, and could still be applied on the basis of a safety factor
approaching unity. It should be observed in this connection that
the strength of steel has probably been more thoroughly investi-
gated than that of any other material. Nevertheless, even in the
field of steel structures, which have been designed according to
the rational methods of theoretical stress analysis for the past
hundred years or so, a safety factor ranging from 3 to 10 or
more is employed, depending upon the nature of the applied load
and other conditions.

It is well known that what are ordinarily referred to as
safety factors are actually factors of ignorance. They are in-
troduced into rational methods of design for the specific purpose
of making due allowance for variables similar to those listed by
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Mr. Griffith, for which uncertainty exists concerning their mag-
nitude and effect. Consequently, for any rational method of
flexible pavement design that may be developed and applied, it is
to be expected that a safety factor will have to be employed to
provide for the uncertain influence of variables that cannot be
accurately or completely evaluated. In this respect, a rational
method of design for flexible pavements will be no different from
those in other fields where the use of rational methods has been
commonplace for many years.

In spite of our present inability to evaluate precisely the dif-
ferent factors listed by Mr. Griffith, flexible pavements continue
to be built. In some manner or other, each of the difficulties he
has mentioned is being either consciously or unconsciously con-
sidered when choosing the design to be employed, whether this
selection is based upon empirical tests, past experience, or in-
spired guess. It is precisely because flexible pavements are
built on this basis at the present time that some are underde-
signed and fail prematurely, while others are greatly over-
designed. Either condition represents a serious wastage of ma-
terials and construction effort, that could be avoided by a ra-
tional method of design.

Before any favoured rational method of flexible pavement
design can be applied, however, the safety factor to be employed
must be determined. As pointed out in the paper itself, this
safety factor could be evaluated for existing flexible pavement
construction in any given area where conditions are relatively
uniform. From this information, the magnitude of the safety
factor that seemed to avoid both overdesign and underdesign
could be established. The size of the safety factor to be em-
ployed would probably vary somewhat from locality to locality,
depending upon each particular set of local conditions. It would
also vary within each locality depending upon the critical wheel
or axle loading and volume of traffic to be carried.

Among the many other advantages of rational over empirical
methods of design, brief mention should be made of one in par-
ticular. The application of rational methods will very often re-
veal solutions to problems that would not even be dreamed about
by minds that are married to the empirical approach. Rational
methods indicate the most effective use of materials, and how
they should be combined or assembled to provide maximum
performance for the least expenditure. For example, if the ra-
tional method of flexible pavement design described in this paper
has any merit, it indicates that the overall thicknesses of flexible
pavements could be reduced substantially by:
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(1) the proper use of plastic binders either to introduce cohesion
c into the base course materials, or to increase any existing
c value they possess, always provided, of course, that the
angle of internal friction ¢ is not materially reduced,

(2) increasing the thickness of well-designed bituminous sur-
faces, and

(3) paving the shoulders of highways.

In addition, among other findings it has indicated that greater
flexible pavement thickness is needed at bus stops and traffic
lights, etc., where there is much stopping and starting of traffic,
and that, with all other factors being equal, the ultimate strength
of a flexible pavement is greater under the inner (nearer the
centre) than under the outer wheel path (nearer the shoulder) of
an ordinary highway with earth or gravel shoulders.

The various empirical tests employed for flexible pavement
design, C.B.R., Hveem Stabilometer, North Dakota Cone, Mar-
shall, etc., either singly or in combination could not be made to
provide similar conclusions. Even if the results given by the
particular rational method described in this paper should be
over-optimistic in any respect, it nevertheless illustrates the
supreme advantage that even a relatively elementary rational
approach has over the best empirical methods, namely, it is
capable of indicating solutions to problems that would not even
be suspected on the basis of the empirical approach.

To summarize this reply to Mr. Griffith’s criticisms very
briefly:

(1) The factors that Mr. Griffith has listed as being insurmount-
able to the development of a rational method of flexible pave-
ment design have not prevented the evolution and wide-
spread acceptance of rational methods of design in closely
related fields such as rigid pavements, earth dams, embank-
ments, retaining walls, etc.

(2) The continued, unquestioning acceptance of empirical methods
of flexible pavement design prevents engineers from acquir-
ing an understanding of the fundamental factors that actually
control the performance of flexible pavements in service, and
blinds them to possible solutions to problems in this field
that even a relatively elementary rational method of flexible
pavement design would reveal.

This reply to Mr. Griffith’s brief comments is much longer
than could ordinarily be justified. However, empirical methods
of design for flexible pavements are so firmly entrenched, and
have such a large following, that the author has been glad to have
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the opportunity, provided by Mr. Griffith’s criticisms, of pre-
senting some of the merits of the case for a rational approach to
flexible pavement design.

MR. DON E. STEVENS: Dr. Mcl.eod, would you repeat the
description of your method for combining cohesion with angle of
internal friction. I believe that in some instances you related
ultimate strength with angle of internal friction., Then you also
covered the situation where the influence on ultimate strength
obtained by combining cohesion with the angle of internal fric-
tion was shown. What is the derivation of your method?

DR. McLEOD: In the equation for a logarithmic spiral, the
angle of internal friction appears as a power term. Consequent-
ly, as soon as the angle of internal friction for a material has
been measured by a triaxial or direct shear test, its value can
be introduced directly into the equation. The size of the angle of
internal friction controls the curvature of the logarithmic spiral
failure curve. After the logarithmic spiral failure curve has
been established, the problem becomes one of pure mechanics.
Load moment is balanced against reaction moment. Both mo-
ments are taken about the origin of the spiral. If cohesion is
absent, the reaction moment becomes the net weight moment of
the material contained within the spiral. I cohesion is present,
the reaction moment consists of the net weight moment plus the
cohesion moment. The cohesion moment is due to cohesion ¢
acting along the whole length of the spiral through the material.
The principal problem involved is finding the critical logarith-
mic spiral; that is, the spiral that will just support the smallest
applied load. Obviously, if a certain spiral failure curve will
just carry a certain load, while another spiral will fail under a
much smaller load, the second spiral is more critical than the
first. Locating the critical logarithmic spiral requires the use
of the trial and error method. Examples of the procedure em-
ployed are contained in Appendices to the paper.

MR. STEVENS: I would like to ask a second question, Dr.
McLeod. 1 was impressed by the increase in ultimate strength
values that occur when even a small amount of cohesive material
is introduced into any part of the flexible pavement structure.
Does this imply that the introduction of cohesion into a base
course is chiefly of value only if the base course is otherwise
going to be overloaded, or can we assume from your paper that
the introduction of cohesion into a base course might so increase
its ultimate strength that it would be possible to reduce the
thickness of base?
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DR. McLEOD: Concerning Mr. Stevens’ first point, there is
nothing to be gained from increasing the ultimate strength of a
flexible pavement beyond that needed to support the traffic loads
to be carried, since the unnecessary extra strength represents
wasted materials and construction effort. However, for the case
mentioned by Mr. Stevens, where the base course material is too
weak to support the applied load, if it consists of cohesionless
sand or gravel of low stability, the method described in the paper
indicates that its bearing capacity might be increased greatly by
incorporating a binder that would provide measurable values of
cohesion c. An excellent practical example of the successful
application of this method occurred in the sand hill region of
Nebraska, where unstable cohesionless dune sands were con-
verted into stable road surfaces by mixing in liquid asphalts,
which furnished cohesion c. Consequently, in areas where highly
stable granular materials are not available, but large quantities
of unstable sands or gravels exist, it should be worth while to
investigate the cost of improving the stability of these local ma-
terials by the introduction of cohesive binders versus the ex-
pense of importing stable granular materials such as crushed
stone. The most readily available inexpensive cohesive materials
are usually tars and asphalts, with clays being in the same cate-
gory. It is believed that the success or failure of the stabiliza-
tion of different soils with either clay or bituminous materials
can be explained in terms of the ultimate strength approach
described in the paper. :

As a matter of fact, the adoption of a rational method of flex-
ible pavement design would probably do more to extend the de-
velopment and use of soil stabilization than any other single factor
that could be introduced. This is particularly true of the more
clayey types of soils which tend to be borderline or deficient in
stability even when bituminous or similar binders are added. By
means of a rational method of flexible pavement design, it could
be determined by calculation whether or not the use of a proposed
stabilized soil material was capable of providing a flexible pave-
ment of the required strength. If the particular stabilized soil
was incapable of developing the strength needed, a rational method
would indicate the property or porperties that must be improved
to provide the necessary stability. Furthermore, the required
minimum thickness of the stabilized soil layer could be quickly
calculated.

MR. STEVENS: Do you feel that increasing the ultimate
strength of the base course would make it possible to reduce the
thickness of base required?
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DR. McLEOD: That conclusion is definitely indicated by the
rational approach to flexible pavement design described in this
paper. However, as with most engineering materials, the matter
of economics is involved. Is it cheaper to use a certain required
thickness of a given granular material, or a smaller thickness of
the same granular material to which a binder has been added to
increase its ultimate strength? Or would a reduced thickness of
a cohesionless aggregate of greater stability be cheaper than
either? The method outlined in the paper provides quantitative
answers to problems such as these. It indicates the thickness of
each of the different materials that would be required, and this in
turn makes it possible to compare their costs in place in an over-
all highway or airport pavement structure that must support a
given wheel load and traffic intensity.

MR. WM. FORD: I am interested in the advantages of intro-
ducing a bituminous binder into the base course material in order
to reduce base course thickness. One of your diagrams indicated
an increase in strength of nearly 40 per cent for the flexible pave-
ment as a whole, by adding a binder to a granular base. Does this
mean that by incorporating an asphalt or similar binder into the
base, the required thickness of base could be reduced from say
eight inches of crushed stone or gravel to five inches of the same
aggregate that had been treated with asphalt?

DR. McLEOD: It should be explained that for the example
shown in one of the slides (Figure 13 of the paper), the increase of
approximately forty per cent in the strength of the overall flexible
pavement structure obtained by adding a binder to the base course,
would in general, only hold for the particular combination of flex-
ible pavement layers illustrated by this diagram. If the values for
cohesion ¢ and angle of internal friction ¢ shown for each layer
were changed appreciably, the increase in ultimate strength ob-
tained by adding a binder to the base might be even more than 40
per cent, but could also conceivably be very much less. Further-
more, if the binder added to the base seriously decreased its angle
of internal friction ¢, there could actually be a decrease in the
strength of the overall flexible pavement.

MR. FORD: I would like to make the point, however, that I
am interested strictly in the base; that is, in a comparison of the
strength of water-bound or traffic-bound macadam versus that of
a bituminous-bound macadam base. If you were to eliminate the
other factors, such as the wearing surface and subgrade and con-
sidered only the base course, would it not be possible for your
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method to demonstrate that by incorporating bituminous binder
the strength of the base would be so greatly increased that the
base course thickness requirement could be reduced in the ratio
of eight to five or some similar value?

DR. McLEOD: The question you have raised is a very impor-
tant one. Nevertheless, there would seem to be considerable
danger in concenirating too much attention on a particular layer
such as the base course, and neglecting its effect on the flexible
pavement as a whole. The ultimate strength of the overall flex-
ible pavement is of greater importance than the strength of any
specific layer. The stability of the material in any one layer
might be increased by 100 per cent or more by means of some
particular treatment, without providing more than a relatively
modest increase in strength for the flexible pavement as a whole.
The thickness of the layer might be too small to exert much ef-
fect.

A flexible pavement usually consists of at least three layers,
subgrade, base course, and bituminous surface. The ultimate
strength of a flexible pavement depends upon the values of the
angle of internal friction ¢ and cohesion c of each layer, and upon
the individual thicknesses of base course and surface. Conse-
quently, the angle of internal friction ¢ and cohesion c for the
material in each layer must be measured by either triaxial com-
pression or direct shear tests, and the thicknesses of base and
surface must be known, before the ultimate strength of the flex-
ible pavement as a whole can be calculated.

For your particular problem, therefore, it would be necessary
to obtain values of the angle of internal friction ¢ and cohesion c
for the traffic-bound or water-bound macadam base, for the same
base after treatment with a bituminous binder, for the subgrade
and for the bituminous surface, together with the thickness of the
surface and of the base, before calculations could be undertaken
to determine whether or not the addition of a bituminous binder
to the base would result in an increase in strength of the flexible
pavement as a whole, and by how much. If for any reason so
much bituminous binder were added to the base that it functioned
at least in part as a lubricant and decreased the base course
stability, a loss in ultimate strength of the flexible pavement
structure could occur. On the other hand, Figures 7, 13, 14, and
17 of the paper tend to indicate that by adding a carefully con-
trolled amount of bituminous binder to the usual granular base,
an increase in the ultimate strength of the overall flexible pave-
ment could be expected. Nevertheless, the per cent increase in
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ultimate strength of a flexible pavement resulting from treatment
of the base course would have to be calculated for the particular
conditions associated with each project.

Figure 14 of the paper has considerable bearing on your ques-
tion, for it indicates the effect on base course thickness that could
be expected under a given set of conditions by adding a binder to
the base. With all other factors held constant, including the load
supporting value of the overall flexible pavement (112 p.s.i.), in-
troducing a binder into the granular base permitted an appreciable
reduction in base course thickness. Without binder, the required
thickness of base course (¢ = 40°) was 12 inches. When sufficient
binder was incorporated into the same base course to provide co-
hesion ¢ = 2.62 p.s.i., a relatively low value of cohesion, Figure
14 (c) shows that the base course thickness requirement was re-
duced to 7.2 inches. This represents a decrease of 40 per cent
in base course thickness for the particular conditions illustrated,

MR. J. E. DRISCOLL (by letter): Our question concerns a re-
cent full page advertisement by the Portland Cement Association.
The advertisement, among other things, indicated that the distri-
bution of wheel load through a portland cement concrete pavement
was at an angle approaching the infinite, whereas the load through
a flexible pavement was confined to the contact area of the applied
load, without benefit of a reduction in unit pressure resulting from
lateral distribution (Figure B).

Under ordinary circumstances, it is our belief based on con-
siderable research, that flexible pavements distribute wheel load
through the surface, base, and subgrade at an angle of approxi-
mately 45°.

Can you prove or disprove the suggested conclusion contained
in the advertisement? In any event, we would appreciate your
comments.

DR. McLEOD:(by letter): Figure B reproduces the diagram
illustrating the distribution of wheel load pressure through a
rigid pavement, and through a flexible pavement, that appears in
the article to which Mr. Driscoll refers, Figure B(a) pertaining
to the rigid pavement, and Figure B(b) to the flexible pavement.
When analysed from the point of view of pressure transmission,
this diagram is essentially correct. It is intended to indicate
that the stress on the subgrade immediately beneath a wheel load
on a flexible pavement is much greater than that for the same
wheel load on a rigid pavement. It is generally recognized that
because of its rigidity, a portland cement concrete slab distributes
a given applied wheel load over a much greater area of subgrade
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NOTE — THIS DIAGRAM APPEARED ON PAGE 43 OF COLLIERS MAGAZINE FEBRUARY
19,1954, AND CARRIED THE FOLLOWING CAPTION:

"TRAFFIC EXERTS PRESSURE ON THE UNDERLYING SOIL. LEFT HAND SKETCH
(d) SHOWS HOW CONCRETE'S BEAM STRENGTH EREADS THIS PRESSURE .
ON FLEXIBLE PAVEMENT (RIGHT HAND SKETCH (D)) THIS TRAFFIC PRESS-
URE IS CONCENTRATED RIGHT UNDER LOAD,WHICH OF TEN CAUSES FAILURE"

Fig. B. Illustrating Pattern of Pressure Transmission through

Rigid and Flexible Pavements.

than a flexible pavement is capable of doing. It is to be empha-
sized again that Figure B illustrates a fundamental difference be-
tween rigid and flexible pavements concerning the manner in
which they #ransmit an applied load to the underlying subgrade,
rigid pavements applying a small intensity of pressure over a
large area of subgrade, while flexible pavements apply higher
intensities of pressure over a much smaller area of the subgrade.
However, there is an entirely different way of looking at this
problem than that represented by Figure B. How do rigid and
flexible pavements compare in their relative abilities o mobilize
the potential supporting value of the underlying subgrade? This
is illustrated diagramatically in Figure C, in which Figure C(a)
refers to a rigid pavement and Figure C(b) to a flexible pavement.
Figure C demonstrates a generally recognized fundamental dif-
ference between rigid and flexible pavements, in that a flexible
pavement is considered to be capable of developing several times
greater subgrade support than is possible for a rigid pavement.
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It is widely accepted that the critical deflection for a rigid
pavement under load is approximately 0.05 inch. Applied loads
developing a greater deflection of the rigid pavement than this are
likely to crack the slab. Consequently, the maximum degree of
subgrade bearing capacity that can be mobilized by a rigid pave-
ment is the supporting value of the subgrade in pounds per square
inch at 0.05 inch deflection. This is only a small fraction of the
potential load carrying capacity of most subgrades.

When a rigid pavement loses contact with the subgrade at any
point because of pumping joints, warping stresses due to tempera-
ture or moisture gradients through the slabs, ete., it is unable to
develop even this relatively small amount of subgrade bearing
capacity. Under these conditions, the subgrade support under por-
tions of the rigid pavement may become zero, and the entire ap-
plied load must be supported by the beam action of the slabs., It
is usually because the subgrade support is seriously decreased
or becomes zero, and the bridging strength of the rigid pavement
is inadequate, that cracking of slabs occurs at joints, corners,
etc.

The precise mechanism of failure of flexible pavements when
overloaded is still unknown. However, investigations by The As-
phalt Institute and others seem to show that a flexible pavement
can withstand a deflection of at least 0.5 inch without failure.

The supporting value of a subgrade at 0.5 inch deflection can be

B8 S il DI 20 O DD i @
'SUBGRADE / //// SUBGRADE
i, /,

RIGID PAVEMENT FLEXIBLE PAVEMENT

(a) (b)

Fig. C. Illustrating Pattern of Subgrade Reaction Mobilized by
Rigid and by Flexible Pavements,
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from four to five times greater than its supporting value at 0.05
inch deflection for most soils. Therefore, as illustrated by Fig-
ure C, a flexible pavement can mobilize from four to five times
more subgrade support measured in pounds per square inch than
can a rigid pavement. This greater subgrade supporting value is
utilized in flexible pavement design and reduces the thickness
that would otherwise be required. Furthermore, it is a funda-
mental characteristic of flexible pavements that they maintain
contact at all points with the subgrade. Their flexibility enables
them to deform as required to maintain this contact. Conse-
quently, a flexible pavement can be depended upon to adjust itself
so as to mobilize a high degree of subgrade support at all times,
while under certain conditions previously referred to the sub-
grade support at some points under a rigid pavement may become
Zero.

Insofar as articles for popular consumption by a non-technical
audience are concerned, proponents of rigid pavements may pre-
fer Figure B, while advocates of flexible pavements might em-
phasize Figure C. It should be clearly understood, however, that
these two figures merely emphasize opposite aspects of the same
problem, namely, the action of the loaded pavement on one hand
and the reaction of the subgrade on the other. It is widely recog-
nized that both rigid and flexible pavements can be designed and
constructed to give many years of satisfactory service perform-
ance under any wheel or axle loading and under any traffic in-
tensity. Consequently, any diagram that is intended to create any
other impression is both incorrect and misleading.

Mr. Driscoll refers to the average angle of pressure trans-
mission through a flexible pavement from the loaded area and
points out that this is often assumed to be 45° It is usually fur-
ther assumed that the transmitted pressure is uniform on any
horizontal plane within the zone enclosed by this 45° angle of
pressure transmission.

Actual measurements have shown that when a soil or aggre-
gate is uniformly loaded on any specified contact area at the sur-
face, the pattern of the distribution of vertical stress on a hori-
zontal plane at any depth below the surface tends to have the shape
of a helmet or bell, Figure D. The base of the bell becomes wider
and its height becomes shallower at increasing depths below the
surface. Consequently, the pressure actually exerted on this
horizontal plane is not uniform. The greatest pressure occurs
along the vertical axis of the loaded area, and it decreases with
increasing radial distance from this axis.

For problems in flexible pavement design, this bell-shaped
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Fig. D. Diagram Illustrating Actual Pressure Distribution on
Horizontal Plane At Depth versus Uniform Pressure Distribution

Resulting From Assumption of A 45° Angle of Pressure Distribu-

tion.

pattern of vertical pressure distribution is not easily handled on a
mathematical basis. Consequently, for calculating the required
thickness of flexible pavement, several methods employ the as-
sumption that a uniform pressure is exerted on any horizontal
plane at depth, and that this uniform pressure is applied over the
circular area bounded by the frustrum of a cone making an angle
of 45° with the vertical through the perimeter of the loaded area
(assuming the loaded area to be circular in shape, Figure D). The
Gray formula is an example of a flexible pavement thickness equa-
tion, which assumes a uniform distribution of pressure within a
45° angle of pressure transmission from the boundary of the loaded
area.

It should be noted that certain building codes are much more
conservative concerning the assumption of a uniform pressure
within a specified anglé of pressure transmission from the loaded
area, than are these flexible pavement design equations similar to
the Gray formula. Some building codes specify that this angle of
pressure transmission must not be assumed to be larger than 30°.

Figure D demonstrates that the assumption of uniform pressure
within an angle of pressure transmission of 45° gives an average
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vertical pressure on the horizontal plane a - a at any depth z that
is considerably less than the maximum vertical pressure that is
actually exerted along the vertical axis of the loaded area. This
has been demonstrated by actual measurement and by calculations
based upon the theory of elasticity.

In his paper on flexible pavement design published in 1940 in
Volume 20, Proceedings of the Highway Research Board, Mr. A,
T. Goldbeck reports that for any specified surface load the ver-
tical pressure actually measured at any given depth along the
vertical axis through the loaded area was much greater than the
value of the uniform pressure calculated for that depth on the
basis of a 45° angle of pressure transmission. Results of labora-
tory tests in which known loads were applied at the surface of base
course materials having thicknesses frequently employed for high-
ways led Mr. Goldbeck to conclude that the average pressures on
the subgrade calculated by assuming a 45° angle of pressure trans-
mission through the base course were approximately one half the
vertical pressures actually exerted on the subgrade along the
vertical axis through the loaded area. Based on Mr. Goldbeck’s
findings, therefore, the assumption of an average uniform pres-
sure on the subgrade within a 45° angle of pressure transmission
could lead to serious underdesign. To avoid this underdesign,

Mr. Goldbeck recommended that the average uniform pressure on
the subgrade, obtained by assuming a 45° angle of pressure trans-
mission through the base course, be multiplied by 2 for single
tires and by 2.5 for dual tires.

H the subgrade must not be overstressed at any point below
the loaded area at the surface, Mr. Goldbeck’s data and Figure D
indicate that design equations based upon uniform pressure within
a 45° angle of pressure transmission would result in underdesign.
On the other hand, if the subgrade is overstressed at any given
point, it will deform and transfer some of the load to adjacent
points that are not overstressed. To the extent that this can occur
without causing serious distortion of the surface of a flexible pave-
ment, the assumption of uniform pressure within a 45° angle of
pressure distribution avoids underdesign.

The most serious criticism that can be made of flexible pave-
ment design equations based upon the assumption of uniform
pressure within a 45° angle of pressure transmission is that they
give no direction concerning the way in which the supporting value
of the subgrade is to be measured or determined. In general, this
very important problem is completely ignored, even though the
equations themselves contain a factor that is usually considered
to represent subgrade support. In reality, this factor does not
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actually represent subgrade support, it merely provides values of
the average pressures that are transmitted to the subgrade through
various depths of base course. These equations do not indicate
how an engineer is to know whether or not any given subgrade will
be able to support these transmitted pressures. Expressed in
another way, these design equations concentrate on the “action”
phase of the problem, that is, on the magnitude of the average
uniform pressure transmitted to the subgrade, and they give no
attention to the “reaction” phase of the problem, that is, to the
way in which the subgrade reacts to applied pressure. Itis a
well-known principle of mechanics that there can be no equili-
brium unless action and reaction are equal, or as expressed
mathematically for this case where vertical action and reaction
are involved, AV must be equal to zero.

The magnitude of the support that any given clay or clay loam
subgrade can provide depends upon the amount of deflection that
occurs under the applied load and upon the size of the loaded
area. For a given deflection, the subgrade supports a smaller
unit load as the size of the loaded area is increased. For a
given size of contact area, the supporting value of the subgrade
increases as the deflection is increased, at least until the ulti-
mate load is reached. Although these simple facts are widely
known, it is not uncommon to find tables of supporting values for
various types of subgrades listed for use in these flexible pave-
ment design equations, without the slightest reference to either
deflection or size of contact area. Such tables of subgrade sup-
port are practically valueless for flexible pavement design.

These facts should be kept clearly in mind when using design
equations based upon a uniform subgrade pressure and a 45° angle
of pressure distribution. For example, if the strength of a given
clay or clay loam subgrade is measured with a bearing plate 12
inches in diameter resting on its surface, a certain value of sub-
grade support will be obtained at some specified deflection. At
a depth of base course of 9 inches, the loaded area of the sub-
grade is 30 inches in diameter, if the diameter of the loaded con-
tact area at the surface of the base is 12 inches. However, sub-
grade support in p.s.i. for a loaded area 30 inches in diameter is
just one half of supporting value in p.s.i. for a loaded area 12
inches in diameter for the same deflection for many soils. Fur-
thermore, associated with the increasingly larger loaded area of
the subgrade at greater depths of base is a smaller deflection,
assuming that the deflection at the surface under the applied load
remains constant, since deflection decreases with depth under
this condition. Due to this smaller deflection at depth, the
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developed value of subgrade support is further decreased. Con-
sequently, a different value of subgrade support should be as-
sociated with every thickness of base course being investigated
by design equations which assume uniform average pressure
distribution within a 45° angle of pressure transmission. How
often is this done? Usually one value of subgrade support is as-
sumed, regardless of the thickness of base course under con-
sideration.

How often is any information available concerning the way in
which the supporting value of any subgrade in question varies with
the size of the loaded area, and with the deflection that occurs
under load? Finally, is there some critical transmitted load or
some critical deflection for each subgrade that should not be ex-
ceeded insofar as flexible pavement design for heavily travelled
highways or busy airports is concerned?

It appears, therefore, that sufficient published data are not
yet available to establish whether the angle of pressure trans-
mission through a flexible pavement, that should be associated
with the assumption of uniform average pressure distribution on
the subgrade, is approximately 45° or some other value, and
whether this angle is a constant or varies with depth and with
characteristics of base course material, etc.



